Projective quartics revisited

T. Szemberg; H. Tutaj-Gasińska

Annales Polonici Mathematici (1999)

  • Volume: 72, Issue: 1, page 43-50
  • ISSN: 0066-2216

Abstract

top
We classify all smooth projective varieties of degree 4 and describe their syzygies.

How to cite

top

Szemberg, T., and Tutaj-Gasińska, H.. "Projective quartics revisited." Annales Polonici Mathematici 72.1 (1999): 43-50. <http://eudml.org/doc/262546>.

@article{Szemberg1999,
abstract = {We classify all smooth projective varieties of degree 4 and describe their syzygies.},
author = {Szemberg, T., Tutaj-Gasińska, H.},
journal = {Annales Polonici Mathematici},
keywords = {syzygy; free resolution; quartics; classification of projective quartics},
language = {eng},
number = {1},
pages = {43-50},
title = {Projective quartics revisited},
url = {http://eudml.org/doc/262546},
volume = {72},
year = {1999},
}

TY - JOUR
AU - Szemberg, T.
AU - Tutaj-Gasińska, H.
TI - Projective quartics revisited
JO - Annales Polonici Mathematici
PY - 1999
VL - 72
IS - 1
SP - 43
EP - 50
AB - We classify all smooth projective varieties of degree 4 and describe their syzygies.
LA - eng
KW - syzygy; free resolution; quartics; classification of projective quartics
UR - http://eudml.org/doc/262546
ER -

References

top
  1. [1] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Ergeb. Math. Grenzgeb. (3) 4, Springer, 1984. Zbl0718.14023
  2. [2] T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive, in: Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math. 10, 1987, 167-178. 
  3. [3] J. Harris, Algebraic Geometry. A First Course, Springer, 1992. Zbl0779.14001
  4. [4] R. Hartshorne, Algebraic Geometry, Springer, 1977. 
  5. [5] P. Ionescu, Variétés projectives lisses de degrés 5 et 6, C. R. Acad. Sci. Paris 293 (1981), 685-687. Zbl0516.14025
  6. [6] P. Ionescu, On varieties whose degree is small with respect to codimension, Math. Ann. 271 (1985), 339-348. Zbl0541.14032
  7. [7] D. Mumford, Varieties defined by quadratic equations, in: Questions on Algebraic Varieties, Edizioni Cremonese, Roma, 1970, 29-94 (Appendix by G. Kempf, 95-100). 
  8. [8] H. P. F. Swinnerton-Dyer, An enumeration of all varieties of degree 4, Amer. J. Math. 95 (1973), 403-418. Zbl0281.14023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.