Projective quartics revisited

T. Szemberg; H. Tutaj-Gasińska

Annales Polonici Mathematici (1999)

  • Volume: 72, Issue: 1, page 43-50
  • ISSN: 0066-2216

Abstract

top
We classify all smooth projective varieties of degree 4 and describe their syzygies.

How to cite

top

Szemberg, T., and Tutaj-Gasińska, H.. "Projective quartics revisited." Annales Polonici Mathematici 72.1 (1999): 43-50. <http://eudml.org/doc/262546>.

@article{Szemberg1999,
abstract = {We classify all smooth projective varieties of degree 4 and describe their syzygies.},
author = {Szemberg, T., Tutaj-Gasińska, H.},
journal = {Annales Polonici Mathematici},
keywords = {syzygy; free resolution; quartics; classification of projective quartics},
language = {eng},
number = {1},
pages = {43-50},
title = {Projective quartics revisited},
url = {http://eudml.org/doc/262546},
volume = {72},
year = {1999},
}

TY - JOUR
AU - Szemberg, T.
AU - Tutaj-Gasińska, H.
TI - Projective quartics revisited
JO - Annales Polonici Mathematici
PY - 1999
VL - 72
IS - 1
SP - 43
EP - 50
AB - We classify all smooth projective varieties of degree 4 and describe their syzygies.
LA - eng
KW - syzygy; free resolution; quartics; classification of projective quartics
UR - http://eudml.org/doc/262546
ER -

References

top
  1. [1] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Ergeb. Math. Grenzgeb. (3) 4, Springer, 1984. Zbl0718.14023
  2. [2] T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive, in: Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math. 10, 1987, 167-178. 
  3. [3] J. Harris, Algebraic Geometry. A First Course, Springer, 1992. Zbl0779.14001
  4. [4] R. Hartshorne, Algebraic Geometry, Springer, 1977. 
  5. [5] P. Ionescu, Variétés projectives lisses de degrés 5 et 6, C. R. Acad. Sci. Paris 293 (1981), 685-687. Zbl0516.14025
  6. [6] P. Ionescu, On varieties whose degree is small with respect to codimension, Math. Ann. 271 (1985), 339-348. Zbl0541.14032
  7. [7] D. Mumford, Varieties defined by quadratic equations, in: Questions on Algebraic Varieties, Edizioni Cremonese, Roma, 1970, 29-94 (Appendix by G. Kempf, 95-100). 
  8. [8] H. P. F. Swinnerton-Dyer, An enumeration of all varieties of degree 4, Amer. J. Math. 95 (1973), 403-418. Zbl0281.14023

NotesEmbed ?

top

You must be logged in to post comments.