Nonassociative normed algebras: geometric aspects

Angel Rodríguez Palacios

Banach Center Publications (1994)

  • Volume: 30, Issue: 1, page 299-311
  • ISSN: 0137-6934

Abstract

top
Introduction. The aim of this paper is to review some relevant results concerning the geometry of nonassociative normed algebras, without assuming in the first instance that such algebras satisfy any familiar identity, like associativity, commutativity, or Jordan axiom. In the opinion of the author, the most impressive fact in this direction is that most of the celebrated natural geometric conditions that can be required for associative normed algebras, when imposed on a general nonassociative normed algebra, imply that the algebra is actually "nearly associative". We shall explain this idea by selecting four favourite topics, namely: • Nonassociative Vidav-Palmer theorem, • Nonassociative Gelfand-Naimark theorem, • Nonassociative smooth normed algebras, and • One-sided division absolute valued algebras. Although there are classical nice forerunners in this circle of ideas, as for example the Albert-Urbanik-Wright determination of (nonassociative) absolute valued algebras with a unit ([2], [3], [42], and [41]), a systematic treatment of questions of this type has been made only recently, more precisely since 1980 [34].

How to cite

top

Rodríguez Palacios, Angel. "Nonassociative normed algebras: geometric aspects." Banach Center Publications 30.1 (1994): 299-311. <http://eudml.org/doc/262555>.

@article{RodríguezPalacios1994,
abstract = { Introduction. The aim of this paper is to review some relevant results concerning the geometry of nonassociative normed algebras, without assuming in the first instance that such algebras satisfy any familiar identity, like associativity, commutativity, or Jordan axiom. In the opinion of the author, the most impressive fact in this direction is that most of the celebrated natural geometric conditions that can be required for associative normed algebras, when imposed on a general nonassociative normed algebra, imply that the algebra is actually "nearly associative". We shall explain this idea by selecting four favourite topics, namely: • Nonassociative Vidav-Palmer theorem, • Nonassociative Gelfand-Naimark theorem, • Nonassociative smooth normed algebras, and • One-sided division absolute valued algebras. Although there are classical nice forerunners in this circle of ideas, as for example the Albert-Urbanik-Wright determination of (nonassociative) absolute valued algebras with a unit ([2], [3], [42], and [41]), a systematic treatment of questions of this type has been made only recently, more precisely since 1980 [34]. },
author = {Rodríguez Palacios, Angel},
journal = {Banach Center Publications},
keywords = {nonassociative Vidav-Palmer theorem; nonassociative Gelfand-Naimark theorem; nonassociative smooth normed algebras; one-sided division absolute valued algebras; geometry of nonassociative normed algebras; noncommutative -algebra; Gelfand-Naimark axiom; Gelfand-Mazur theorem},
language = {eng},
number = {1},
pages = {299-311},
title = {Nonassociative normed algebras: geometric aspects},
url = {http://eudml.org/doc/262555},
volume = {30},
year = {1994},
}

TY - JOUR
AU - Rodríguez Palacios, Angel
TI - Nonassociative normed algebras: geometric aspects
JO - Banach Center Publications
PY - 1994
VL - 30
IS - 1
SP - 299
EP - 311
AB - Introduction. The aim of this paper is to review some relevant results concerning the geometry of nonassociative normed algebras, without assuming in the first instance that such algebras satisfy any familiar identity, like associativity, commutativity, or Jordan axiom. In the opinion of the author, the most impressive fact in this direction is that most of the celebrated natural geometric conditions that can be required for associative normed algebras, when imposed on a general nonassociative normed algebra, imply that the algebra is actually "nearly associative". We shall explain this idea by selecting four favourite topics, namely: • Nonassociative Vidav-Palmer theorem, • Nonassociative Gelfand-Naimark theorem, • Nonassociative smooth normed algebras, and • One-sided division absolute valued algebras. Although there are classical nice forerunners in this circle of ideas, as for example the Albert-Urbanik-Wright determination of (nonassociative) absolute valued algebras with a unit ([2], [3], [42], and [41]), a systematic treatment of questions of this type has been made only recently, more precisely since 1980 [34].
LA - eng
KW - nonassociative Vidav-Palmer theorem; nonassociative Gelfand-Naimark theorem; nonassociative smooth normed algebras; one-sided division absolute valued algebras; geometry of nonassociative normed algebras; noncommutative -algebra; Gelfand-Naimark axiom; Gelfand-Mazur theorem
UR - http://eudml.org/doc/262555
ER -

References

top
  1. [1] C. A. Akemann and B. Russo, Geometry of the unit sphere of a C*-algebra and its dual, Pacific J. Math. 32 (1970), 575-585. Zbl0194.44204
  2. [2] A. A. Albert, Absolute valued algebras, Ann. of Math. 48 (1947), 495-501. Zbl0029.01001
  3. [3] A. A. Albert, Absolute valued algebraic algebras, Bull. Amer. Math. Soc. 55 (1949), 763-768; A note of correction, ibid. 55 (1949), 1191. 
  4. [4] E. M. Alfsen and E. G. Effros, Structure in real Banach spaces II, Ann. of Math. 96 (1972), 129-173. Zbl0248.46019
  5. [5] K. Alvermann and G. Janssen, Real and complex non-commutative Jordan Banach algebras, Math. Z. 185 (1984), 105-113. Zbl0513.46044
  6. [6] J. A. Anquela, F. Montaner and T. Cortés, On primitive Jordan algebras, J. Algebra, to appear. Zbl0801.17039
  7. [7] J. A. Anquela, F. Montaner and T. Cortés, On maximal modular inner ideals in Jordan algebras, Comm. Algebra 21 (1993), 2537-2554. Zbl0798.17016
  8. [8] C. Aparicio, F. Ocaña, R. Payá and A. Rodríguez, A non-smooth extension of Fréchet differentiability of the norm with applications to numerical ranges, Glasgow Math. J. 28 (1986), 121-137. Zbl0604.46021
  9. [9] D. B. Blecher, Z. Ruan and A. M. Sinclair, A characterization of operator algebras, J. Funct. Anal. 89 (1990), 188-201. Zbl0714.46043
  10. [10] F. F. Bonsall, Jordan algebras spanned by hermitian elements of a Banach algebra, Math. Proc. Cambridge Philos. Soc. 81 (1977), 3-13. 
  11. [11] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge University Press, 1971. Zbl0207.44802
  12. [12] R. Bott and J. Milnor, On the parallelizability of the spheres, Bull. Amer. Math. Soc. 64 (1958), 87-89. Zbl0082.16602
  13. [13] R. B. Braun, Structure and representations of non-commutative C*-Jordan algebras, Manuscripta Math. 41 (1983), 139-171. Zbl0512.46055
  14. [14] R. B. Braun, A Gelfand-Neumark theorem for C*-alternative algebras, Math. Z. 185 (1984), 225-242. Zbl0514.46047
  15. [15] M. Cabrera and A. Rodríguez, Nonassociative ultraprime normed algebras, Quart. J. Math. Oxford 43 (1992), 1-7. Zbl0758.46037
  16. [16] M. Cabrera and A. Rodríguez, New associative and nonassociative Gelfand-Naimark theorems, Manuscripta Math. 79 (1993), 197-208. Zbl0816.46050
  17. [17] J. A. Cuenca, On one-sided division infinite-dimensional normed real algebras, Publ. Mat. 36 (1992), 485-488. Zbl0783.17001
  18. [18] A. Fernández, E. Garcia and A. Rodríguez, A Zel'manov prime theorem for JB*-algebras, J. London Math. Soc. 46 (1992), 319-335. Zbl0723.17025
  19. [19] A. Fernández and A. Rodríguez, Primitive noncommutative Jordan algebras with nonzero socle, Proc. Amer. Math. Soc. 96 (1986), 199-206. Zbl0585.17001
  20. [20] Y. Friedman and B. Russo, The Gelfand-Naimark theorem for JB*-triples, Duke Math. J. 53 (1986), 139-148. Zbl0637.46049
  21. [21] J. R. Giles, D. A. Gregory and B. Sims, Geometrical implications of upper semi-continuity of the duality mapping on a Banach space, Pacific J. Math. 79 (1978), 99-108. Zbl0399.46012
  22. [22] H. Hanche-Olsen and E. Stormer, Jordan Operator Algebras, Monograph Stud. Math. 21, Pitman, 1984. Zbl0561.46031
  23. [23] L. Hogben and K. McCrimmon, Maximal modular inner ideals and the Jacobson radical of a Jordan algebra, J. Algebra 68 (1981), 155-169. Zbl0449.17011
  24. [24] N. Jacobson, Structure and Representations of Jordan Algebras, Amer. Math. Soc. Colloq. Publ. 39, Providence, R.I., 1968. 
  25. [25] R. V. Kadison, A representation theory for commutative topological algebras, Mem. Amer. Math. Soc. 7 (1951). Zbl0042.34801
  26. [26] A. M. Kaidi, J. Martínez and A. Rodríguez, On a nonassociative Vidav-Palmer theorem, Quart. J. Math. Oxford 32 (1981), 435-442. Zbl0446.46043
  27. [27] M. L. El-Mallah et A. Micali, Sur les dimensions des algèbres absolument valuées, J. Algebra 68 (1981), 237-246. 
  28. [28] J. Martínez, JV-algebras, Math. Proc. Cambridge Philos. Soc. 87 (1980), 47-50. 
  29. [29] J. Martínez, J. F. Mena, R. Payá and A. Rodríguez, An approach to numerical ranges without Banach algebra theory, Illinois J. Math. 29 (1985), 609-626. Zbl0604.46052
  30. [30] K. McCrimmon and E. Zel'manov, The structure of strongly prime quadratic Jordan algebras, Adv. in Math. 69 (1988), 133-222. Zbl0656.17015
  31. [31] J. I. Nieto, Gateaux differentials in Banach algebras, Math. Z. 139 (1974), 23-34. Zbl0275.46036
  32. [32] R. Payá, J. Pérez and A. Rodríguez, Non-commutative Jordan C*-algebras, Manu- scripta Math. 37 (1982), 87-120. 
  33. [33] R. Payá, J. Pérez and A. Rodríguez, Type I factor representations of non-commutative JB*-algebras, Proc. London Math. Soc. 48 (1984), 428-444. Zbl0509.46052
  34. [34] A. Rodríguez, A Vidav-Palmer theorem for Jordan C*-algebras and related topics, J. London Math. Soc. 22 (1980), 318-332. 
  35. [35] A. Rodríguez, Nonassociative normed algebras spanned by hermitian elements, Proc. London Math. Soc. 47 (1983), 258-274. Zbl0521.47036
  36. [36] A. Rodríguez, An approach to Jordan-Banach algebras from the theory of nonassociative complete normed algebras, Ann. Sci. Univ. Clermont-Ferrand II Math. 27 (1991), 1-57. Zbl0768.17014
  37. [37] A. Rodríguez, One-sided division absolute valued algebras, Publ. Mat. 36 (1992), 925-954. Zbl0797.46040
  38. [38] R. D. Schafer, An Introduction to Nonassociative Algebras, Academic Press, New York, 1966. Zbl0145.25601
  39. [39] E. Strzelecki, Power-associative regular real normed algebras, J. Austral. Math. Soc. 6 (1966), 193-209. Zbl0145.16504
  40. [40] H. Upmeier, Symmetric Banach Manifolds and Jordan C*-algebras, North-Holland, Amsterdam, 1985. 
  41. [41] K. Urbanik and F. B. Wright, Absolute valued algebras, Proc. Amer. Math. Soc. 11 (1960), 861-866. Zbl0156.03801
  42. [42] F. B. Wright, Absolute valued algebras, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 330-332. Zbl0050.03103
  43. [43] J. D. M. Wright, Jordan C*-algebras, Michigan Math. J. 24 (1977), 291-302. 
  44. [44] J. D. M. Wright and M. A. Youngson, On isometries of Jordan algebras, J. London Math. Soc. 17 (1978), 339-344. Zbl0384.46041
  45. [45] M. A. Youngson, A Vidav theorem for Banach Jordan algebras, Math. Proc. Cambridge Philos. Soc. 84 (1978), 263-272. Zbl0392.46038
  46. [46] M. A. Youngson, Hermitian operators on Banach Jordan algebras, Proc. Edinburgh Math. Soc. 22 (1979), 93-104. 
  47. [47] E. Zel'manov, On prime Jordan algebras II, Siberian Math. J. 24 (1983), 89-104. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.