Applications of the Carathéodory theorem to PDEs
Konstanty Holly; Joanna Orewczyk
Annales Polonici Mathematici (2000)
- Volume: 73, Issue: 1, page 1-27
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topHolly, Konstanty, and Orewczyk, Joanna. "Applications of the Carathéodory theorem to PDEs." Annales Polonici Mathematici 73.1 (2000): 1-27. <http://eudml.org/doc/262557>.
@article{Holly2000,
abstract = {We discuss and exploit the Carathéodory theorem on existence and uniqueness of an absolutely continuous solution x: ℐ (⊂ ℝ) → X of a general ODE $ẋ \{(*)\over =\} ℱ(t,x)$ for the right-hand side ℱ : dom ℱ ( ⊂ ℝ × X) → X taking values in an arbitrary Banach space X, and a related result concerning an extension of x. We propose a definition of solvability of (*) admitting all connected ℐ and unifying the cases “dom ℱ is open” and “dom ℱ = ℐ × Ω for some Ω ⊂ X”. We show how to use the theorems mentioned above to get approximate solutions of a nonlinear parabolic PDE and exact solutions of a linear evolution PDE with distribution data.},
author = {Holly, Konstanty, Orewczyk, Joanna},
journal = {Annales Polonici Mathematici},
keywords = {Carathéodory theorem; product integral; Galerkin method; abstract ODE; parabolic PDE; Banach space},
language = {eng},
number = {1},
pages = {1-27},
title = {Applications of the Carathéodory theorem to PDEs},
url = {http://eudml.org/doc/262557},
volume = {73},
year = {2000},
}
TY - JOUR
AU - Holly, Konstanty
AU - Orewczyk, Joanna
TI - Applications of the Carathéodory theorem to PDEs
JO - Annales Polonici Mathematici
PY - 2000
VL - 73
IS - 1
SP - 1
EP - 27
AB - We discuss and exploit the Carathéodory theorem on existence and uniqueness of an absolutely continuous solution x: ℐ (⊂ ℝ) → X of a general ODE $ẋ {(*)\over =} ℱ(t,x)$ for the right-hand side ℱ : dom ℱ ( ⊂ ℝ × X) → X taking values in an arbitrary Banach space X, and a related result concerning an extension of x. We propose a definition of solvability of (*) admitting all connected ℐ and unifying the cases “dom ℱ is open” and “dom ℱ = ℐ × Ω for some Ω ⊂ X”. We show how to use the theorems mentioned above to get approximate solutions of a nonlinear parabolic PDE and exact solutions of a linear evolution PDE with distribution data.
LA - eng
KW - Carathéodory theorem; product integral; Galerkin method; abstract ODE; parabolic PDE; Banach space
UR - http://eudml.org/doc/262557
ER -
References
top- [1] G. Aguaro, Sul teorema di esistenza di Carathéodory per i sistemi di equazioni differenziali ordinarie, Boll. Un. Mat. Ital. 8 (1955), 208-212. Zbl0064.33601
- [2] P. S. Bondarenko, A remark on Carathéodory's existence and uniqueness conditions, Visnik Kiiv. Univ. Ser. Mat. Meh. 14 (1972), 39-42 (in Ukrainian).
- [3] C. Carathéodory, Vorlesungen über reelle Funktionen, Teubner, Leipzig, 1927.
- [4] J. D. Dollard and C. N. Friedman, Product Integrals, Encyclopedia Math. Appl. 10, Addison-Wesley, London, 1979.
- [5] W. N. Everitt and D. Race, On necessary and sufficient conditions for the existence of Carathéodory solutions of ordinary differential equations, Quaestiones Math. 2 (1977/78), 507-512. Zbl0392.34002
- [6] P. Hartman, Ordinary Differential Equations, Wiley, 1964, p. 23. Zbl0125.32102
- [7] K. Holly, Approach to an integral kernel of the evolution N-S equations in through integration of distribution-valued curves, in preparation.
- [8] K. Holly and M. Danielewski, Interdiffusion in solids, free boundary problem for r-component (r ≥ 2) one dimensional mixture showing constant concentration, Phys. Rev. B 50 (1994), 13336-13346.
- [9] K. Holly and M. Wiciak, Compactness method applied to an abstract nonlinear parabolic equation, in: Selected Problems of Mathematics, Anniversary Issue, Vol. 6, Cracow Univ. of Techn., Cracow, 1995, 95-160.
- [10] J. Liouville, Sur le développement des fonctions ou parties de fonctions en séries, etc, Second Mémoire, J. de Math. 2 (1837), 16-35.
- [11] S. Łojasiewicz, An Introduction to the Theory of Real Functions, Wiley, 1988. Zbl0653.26001
- [12] J. Mateja, personal communication.
- [13] Z. Opial, Sur l'équation différentielle ordinaire du premier ordre dont le second membre satisfait aux conditions de Carathéodory, Ann. Polon. Math. 8 (1960), 23-28. Zbl0093.08404
- [14] A. Pelczar and J. Szarski, Introduction to the Theory of Differential Equations, PWN, Warszawa, 1987 (in Polish).
- [15] E. Picard, Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives, J. Math. Pures Appl. 6 (1890), 145-210. Zbl22.0357.02
- [16] R. Rabczuk, Elements of Differential Inequalities, PWN, Warszawa, 1976 (in Polish). Zbl0351.34006
- [17] S. Saks, Theory of the Integral, 2nd ed., Stechert, New York, 1937. Zbl0017.30004
- [18] G. Sansone, Equazioni differenziali nel campo reale, Parte seconda, Zanichelli, Bologna, 1949. Zbl0033.36801
- [19] K. Yosida, Functional Analysis, 6th ed., Springer, 1980, Chap. V, Sec. 5, 135-136.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.