About stability estimates and resolvent conditions

J. Van Dorsselaer; J. Kraaijevanger; M. Spijker

Banach Center Publications (1994)

  • Volume: 29, Issue: 1, page 215-225
  • ISSN: 0137-6934

How to cite

top

Van Dorsselaer, J., Kraaijevanger, J., and Spijker, M.. "About stability estimates and resolvent conditions." Banach Center Publications 29.1 (1994): 215-225. <http://eudml.org/doc/262565>.

@article{VanDorsselaer1994,
author = {Van Dorsselaer, J., Kraaijevanger, J., Spijker, M.},
journal = {Banach Center Publications},
keywords = {stability estimates; resolvent conditions; Kreiss matrix theorem; uniform boundedness; onestep methods; linear multistep methods},
language = {eng},
number = {1},
pages = {215-225},
title = {About stability estimates and resolvent conditions},
url = {http://eudml.org/doc/262565},
volume = {29},
year = {1994},
}

TY - JOUR
AU - Van Dorsselaer, J.
AU - Kraaijevanger, J.
AU - Spijker, M.
TI - About stability estimates and resolvent conditions
JO - Banach Center Publications
PY - 1994
VL - 29
IS - 1
SP - 215
EP - 225
LA - eng
KW - stability estimates; resolvent conditions; Kreiss matrix theorem; uniform boundedness; onestep methods; linear multistep methods
UR - http://eudml.org/doc/262565
ER -

References

top
  1. [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York 1965. 
  2. [2] F. F. Bonsall and J. Duncan, Numerical ranges, in: Studies in Functional Analysis, R. G. Bartle (ed.), Mathematical Association of America, 1980, 1-49. 
  3. [3] Ph. Brenner and V. Thomée, On rational approximations of semigroups, SIAM J. Numer. Anal. 16 (1979), 683-694. Zbl0413.41011
  4. [4] J. B. Conway, A Course in Functional Analysis, Springer, New York 1985. Zbl0558.46001
  5. [5] M. Crouzeix, On multistep approximation of semigroups in Banach spaces, J. Comput. Appl. Math. 20 (1987), 25-35. Zbl0632.65067
  6. [6] D. F. Griffiths, I. Christie and A. R. Mitchell, Analysis of error growth for explicit difference schemes in conduction-convection problems, Internat. J. Numer. Methods Engrg. 15 (1980), 1075-1081. Zbl0432.76077
  7. [7] R. D. Grigorieff, Time discretization of semigroups by the variable two-step BDF method, in: Numerical Treatment of Differential Equations, K. Strehmel (ed.), Teubner, Leipzig 1991, 204-216. 
  8. [8] P. Henrici, Applied and Computational Complex Analysis, vol. 2, Wiley, New York 1977. 
  9. [9] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, 1990. Zbl0704.15002
  10. [10] J. F. B. M. Kraaijevanger, H. W. J. Lenferink and M. N. Spijker, Stepsize restrictions for stability in the numerical solution of ordinary and partial differential equations, J. Comput. Appl. Math. 20 (1987), 67-81. Zbl0633.65065
  11. [11] H. O. Kreiss, Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren, BIT 2 (1962), 153-181. Zbl0109.34702
  12. [12] H. O. Kreiss, Well posed hyperbolic initial boundary value problems and stable difference approximations, in: Proc. Third Internat. Conf. on Hyperbolic Problems, Uppsala, Sweden, 1990. 
  13. [13] H. O. Kreiss and L. Wu, On the stability definition of difference approximations for the initial boundary value problem, Appl. Numer. Math. 12 (1993), 213-227. Zbl0782.65119
  14. [14] G. I. Laptev, Conditions for the uniform well-posedness of the Cauchy problem for systems of equations, Soviet Math. Dokl. 16 (1975), 65-69. Zbl0317.35019
  15. [15] H. W. J. Lenferink and M. N. Spijker, The relevance of stability regions in the numerical solution of initial value problems, in: Numerical Treatment of Differential Equations, K. Strehmel (ed.), Teubner, Leipzig 1988, 95-103. Zbl0684.65086
  16. [16] H. W. J. Lenferink and M. N. Spijker, A generalization of the numerical range of a matrix, Linear Algebra Appl. 140 (1990), 251-266. Zbl0712.15027
  17. [17] H. W. J. Lenferink and M. N. Spijker, On the use of stability regions in the numerical analysis of initial value problems, Math. Comp. 57 (1991), 221-237. Zbl0727.65072
  18. [18] H. W. J. Lenferink and M. N. Spijker, On a generalization of the resolvent condition in the Kreiss matrix theorem, ibid., 211-220. Zbl0726.15020
  19. [19] R. J. LeVeque and L. N. Trefethen, On the resolvent condition in the Kreiss matrix theorem, BIT 24 (1984), 584-591. Zbl0559.15018
  20. [20] Ch. Lubich, On the convergence of multistep methods for nonlinear stiff differential equations, Numer. Math. 58 (1991), 839-853. Zbl0729.65055
  21. [21] Ch. Lubich and O. Nevanlinna, On resolvent conditions and stability estimates, BIT 31 (1991), 293-313. 
  22. [22] C. A. McCarthy and J. Schwartz, On the norm of a finite boolean algebra of projections, and applications to theorems of Kreiss and Morton, Comm. Pure Appl. Math. 18 (1965), 191-201. Zbl0151.19401
  23. [23] J. Miller, On the resolvent of a linear operator associated with a well-posed Cauchy problem, Math. Comp. 22 (1968), 541-548. Zbl0164.16702
  24. [24] J. Miller and G. Strang, Matrix theorems for partial differential and difference equations, Math. Scand. 18 (1966), 113-123. Zbl0144.13404
  25. [25] K. W. Morton, On a matrix theorem due to H. O. Kreiss, Comm. Pure Appl. Math. 17 (1964), 375-379. Zbl0146.13702
  26. [26] O. Nevanlinna, Remarks on time discretization of contraction semigroups, Helsinki Univ. Techn., Inst. Math., report HTKK-MAT-A225 (1984). 
  27. [27] S. V. Parter, Stability, convergence, and pseudo-stability of finite-difference equations for an over-determined problem, Numer. Math. 4 (1962), 277-292. Zbl0112.07802
  28. [28] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York 1983. 
  29. [29] C. Pearcy, An elementary proof of the power inequality for the numerical radius, Michigan Math. J. 13 (1966), 289-291. Zbl0143.16205
  30. [30] S. C. Reddy and L. N. Trefethen, Lax-stability of fully discrete spectral methods via stability regions and pseudo-eigenvalues, Comput. Methods Appl. Mech. Engrg. 80 (1990), 147-164. Zbl0735.65070
  31. [31] S. C. Reddy and L. N. Trefethen, Stability of the method of lines, Numer. Math. 62 (1992), 235-267. Zbl0734.65077
  32. [32] R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, 2nd ed., Wiley, New York 1967. Zbl0155.47502
  33. [33] M.-N. Le Roux, Semidiscretization in time for parabolic problems, Math. Comp. 33 (1979), 919-931. Zbl0417.65049
  34. [34] W. Rudin, Functional Analysis, McGraw-Hill, New York 1973. 
  35. [35] J. C. Smith, An inequality for rational functions, Amer. Math. Monthly 92 (1985), 740-741. 
  36. [36] M. N. Spijker, Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems, Math. Comp. 45 (1985), 377-392. Zbl0579.65092
  37. [37] M. N. Spijker, On a conjecture by LeVeque and Trefethen related to the Kreiss matrix theorem, BIT 31 (1991), 551-555. Zbl0736.15015
  38. [38] E. Tadmor, The equivalence of L 2 -stability, the resolvent condition and strict H-stability, Linear Algebra Appl. 41 (1981), 151-159. Zbl0469.15011
  39. [39] L. N. Trefethen, Non-normal matrices and pseudospectra, in preparation. 
  40. [40] E. Wegert and L. N. Trefethen, From the Buffon needle problem to the Kreiss matrix theorem, Amer. Math. Monthly, to appear. Zbl0799.30002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.