About stability estimates and resolvent conditions
J. Van Dorsselaer; J. Kraaijevanger; M. Spijker
Banach Center Publications (1994)
- Volume: 29, Issue: 1, page 215-225
- ISSN: 0137-6934
Access Full Article
topHow to cite
topVan Dorsselaer, J., Kraaijevanger, J., and Spijker, M.. "About stability estimates and resolvent conditions." Banach Center Publications 29.1 (1994): 215-225. <http://eudml.org/doc/262565>.
@article{VanDorsselaer1994,
author = {Van Dorsselaer, J., Kraaijevanger, J., Spijker, M.},
journal = {Banach Center Publications},
keywords = {stability estimates; resolvent conditions; Kreiss matrix theorem; uniform boundedness; onestep methods; linear multistep methods},
language = {eng},
number = {1},
pages = {215-225},
title = {About stability estimates and resolvent conditions},
url = {http://eudml.org/doc/262565},
volume = {29},
year = {1994},
}
TY - JOUR
AU - Van Dorsselaer, J.
AU - Kraaijevanger, J.
AU - Spijker, M.
TI - About stability estimates and resolvent conditions
JO - Banach Center Publications
PY - 1994
VL - 29
IS - 1
SP - 215
EP - 225
LA - eng
KW - stability estimates; resolvent conditions; Kreiss matrix theorem; uniform boundedness; onestep methods; linear multistep methods
UR - http://eudml.org/doc/262565
ER -
References
top- [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York 1965.
- [2] F. F. Bonsall and J. Duncan, Numerical ranges, in: Studies in Functional Analysis, R. G. Bartle (ed.), Mathematical Association of America, 1980, 1-49.
- [3] Ph. Brenner and V. Thomée, On rational approximations of semigroups, SIAM J. Numer. Anal. 16 (1979), 683-694. Zbl0413.41011
- [4] J. B. Conway, A Course in Functional Analysis, Springer, New York 1985. Zbl0558.46001
- [5] M. Crouzeix, On multistep approximation of semigroups in Banach spaces, J. Comput. Appl. Math. 20 (1987), 25-35. Zbl0632.65067
- [6] D. F. Griffiths, I. Christie and A. R. Mitchell, Analysis of error growth for explicit difference schemes in conduction-convection problems, Internat. J. Numer. Methods Engrg. 15 (1980), 1075-1081. Zbl0432.76077
- [7] R. D. Grigorieff, Time discretization of semigroups by the variable two-step BDF method, in: Numerical Treatment of Differential Equations, K. Strehmel (ed.), Teubner, Leipzig 1991, 204-216.
- [8] P. Henrici, Applied and Computational Complex Analysis, vol. 2, Wiley, New York 1977.
- [9] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, 1990. Zbl0704.15002
- [10] J. F. B. M. Kraaijevanger, H. W. J. Lenferink and M. N. Spijker, Stepsize restrictions for stability in the numerical solution of ordinary and partial differential equations, J. Comput. Appl. Math. 20 (1987), 67-81. Zbl0633.65065
- [11] H. O. Kreiss, Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren, BIT 2 (1962), 153-181. Zbl0109.34702
- [12] H. O. Kreiss, Well posed hyperbolic initial boundary value problems and stable difference approximations, in: Proc. Third Internat. Conf. on Hyperbolic Problems, Uppsala, Sweden, 1990.
- [13] H. O. Kreiss and L. Wu, On the stability definition of difference approximations for the initial boundary value problem, Appl. Numer. Math. 12 (1993), 213-227. Zbl0782.65119
- [14] G. I. Laptev, Conditions for the uniform well-posedness of the Cauchy problem for systems of equations, Soviet Math. Dokl. 16 (1975), 65-69. Zbl0317.35019
- [15] H. W. J. Lenferink and M. N. Spijker, The relevance of stability regions in the numerical solution of initial value problems, in: Numerical Treatment of Differential Equations, K. Strehmel (ed.), Teubner, Leipzig 1988, 95-103. Zbl0684.65086
- [16] H. W. J. Lenferink and M. N. Spijker, A generalization of the numerical range of a matrix, Linear Algebra Appl. 140 (1990), 251-266. Zbl0712.15027
- [17] H. W. J. Lenferink and M. N. Spijker, On the use of stability regions in the numerical analysis of initial value problems, Math. Comp. 57 (1991), 221-237. Zbl0727.65072
- [18] H. W. J. Lenferink and M. N. Spijker, On a generalization of the resolvent condition in the Kreiss matrix theorem, ibid., 211-220. Zbl0726.15020
- [19] R. J. LeVeque and L. N. Trefethen, On the resolvent condition in the Kreiss matrix theorem, BIT 24 (1984), 584-591. Zbl0559.15018
- [20] Ch. Lubich, On the convergence of multistep methods for nonlinear stiff differential equations, Numer. Math. 58 (1991), 839-853. Zbl0729.65055
- [21] Ch. Lubich and O. Nevanlinna, On resolvent conditions and stability estimates, BIT 31 (1991), 293-313.
- [22] C. A. McCarthy and J. Schwartz, On the norm of a finite boolean algebra of projections, and applications to theorems of Kreiss and Morton, Comm. Pure Appl. Math. 18 (1965), 191-201. Zbl0151.19401
- [23] J. Miller, On the resolvent of a linear operator associated with a well-posed Cauchy problem, Math. Comp. 22 (1968), 541-548. Zbl0164.16702
- [24] J. Miller and G. Strang, Matrix theorems for partial differential and difference equations, Math. Scand. 18 (1966), 113-123. Zbl0144.13404
- [25] K. W. Morton, On a matrix theorem due to H. O. Kreiss, Comm. Pure Appl. Math. 17 (1964), 375-379. Zbl0146.13702
- [26] O. Nevanlinna, Remarks on time discretization of contraction semigroups, Helsinki Univ. Techn., Inst. Math., report HTKK-MAT-A225 (1984).
- [27] S. V. Parter, Stability, convergence, and pseudo-stability of finite-difference equations for an over-determined problem, Numer. Math. 4 (1962), 277-292. Zbl0112.07802
- [28] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York 1983.
- [29] C. Pearcy, An elementary proof of the power inequality for the numerical radius, Michigan Math. J. 13 (1966), 289-291. Zbl0143.16205
- [30] S. C. Reddy and L. N. Trefethen, Lax-stability of fully discrete spectral methods via stability regions and pseudo-eigenvalues, Comput. Methods Appl. Mech. Engrg. 80 (1990), 147-164. Zbl0735.65070
- [31] S. C. Reddy and L. N. Trefethen, Stability of the method of lines, Numer. Math. 62 (1992), 235-267. Zbl0734.65077
- [32] R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, 2nd ed., Wiley, New York 1967. Zbl0155.47502
- [33] M.-N. Le Roux, Semidiscretization in time for parabolic problems, Math. Comp. 33 (1979), 919-931. Zbl0417.65049
- [34] W. Rudin, Functional Analysis, McGraw-Hill, New York 1973.
- [35] J. C. Smith, An inequality for rational functions, Amer. Math. Monthly 92 (1985), 740-741.
- [36] M. N. Spijker, Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems, Math. Comp. 45 (1985), 377-392. Zbl0579.65092
- [37] M. N. Spijker, On a conjecture by LeVeque and Trefethen related to the Kreiss matrix theorem, BIT 31 (1991), 551-555. Zbl0736.15015
- [38] E. Tadmor, The equivalence of -stability, the resolvent condition and strict H-stability, Linear Algebra Appl. 41 (1981), 151-159. Zbl0469.15011
- [39] L. N. Trefethen, Non-normal matrices and pseudospectra, in preparation.
- [40] E. Wegert and L. N. Trefethen, From the Buffon needle problem to the Kreiss matrix theorem, Amer. Math. Monthly, to appear. Zbl0799.30002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.