Foliations with complex leaves

Giuseppe Tomassini

Banach Center Publications (1995)

  • Volume: 31, Issue: 1, page 367-372
  • ISSN: 0137-6934

How to cite

top

Tomassini, Giuseppe. "Foliations with complex leaves." Banach Center Publications 31.1 (1995): 367-372. <http://eudml.org/doc/262568>.

@article{Tomassini1995,
author = {Tomassini, Giuseppe},
journal = {Banach Center Publications},
keywords = {-complete foliation; foliations with complex leaves; CR-functions},
language = {eng},
number = {1},
pages = {367-372},
title = {Foliations with complex leaves},
url = {http://eudml.org/doc/262568},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Tomassini, Giuseppe
TI - Foliations with complex leaves
JO - Banach Center Publications
PY - 1995
VL - 31
IS - 1
SP - 367
EP - 372
LA - eng
KW - -complete foliation; foliations with complex leaves; CR-functions
UR - http://eudml.org/doc/262568
ER -

References

top
  1. [1] A. Andreotti et H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259. Zbl0106.05501
  2. [2] A. Andreotti and M. Nacinovich, Analytic convexity, Ann. Scuola Norm. Sup. Pisa 7 (1980), 287-372. Zbl0435.35039
  3. [3] J. Chaumat et A. M. Chollet, Noyaux pour résoudre l’équation ∂̅ dans des classes ultradifférentiables sur des compacts irréguliers de n , preprint. Zbl0777.32009
  4. [4] M. Freeman, Local complex foliations of real submanifolds, Math. Ann. 209 (1970), 1-30. 
  5. [5] M. Freeman, Tangential Cauchy-Riemann equations and uniform approximation, Pacific J. Math. 33 (1970), 101-108. Zbl0184.31103
  6. [6] R. Gay et A. Sebbar, Division et extension dans l’algèbre A ( Ω ) d’un ouvert pseudo-convexe à bord lisse de n , Math. Z. 189 (1985), 421-447. Zbl0547.32009
  7. [7] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, 1973. Zbl0271.32001
  8. [8] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, New York, 1970. Zbl0207.37902
  9. [9] J. J. Kohn, Global regularity for ∂̅ on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273-292. Zbl0276.35071
  10. [10] L. Nirenberg, A proof of the Malgrange preparation theorem, in: Liverpool Singularities 1, 97-105. Zbl0212.10702
  11. [11] C. Rea, Levi flat submanifolds and biholomorphic extension of foliations, Ann. Scuola Norm. Sup. Pisa 26 (1972), 664-681. Zbl0272.57013
  12. [12] N. Sibony, A class of hyperbolic manifolds, in: Recent Developments in Several Complex Variables, Ann. of Math. Stud. 100, Princeton Univ. Press, 1981. 
  13. [13] F. Sommer, Komplexe analytische Blätterung reeler Mannigfaltigkeiten in n , Math. Ann. 136 (1958), 111-133. Zbl0092.29902
  14. [14] G. Tomassini, Extension d'objets CR, Math. Z. 194 (1987), 471-486. Zbl0629.32015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.