Hoops and their implicational reducts (abstract)

W. Bloki; I. Ferreirim

Banach Center Publications (1993)

  • Volume: 28, Issue: 1, page 219-230
  • ISSN: 0137-6934

How to cite

top

Bloki, W., and Ferreirim, I.. "Hoops and their implicational reducts (abstract)." Banach Center Publications 28.1 (1993): 219-230. <http://eudml.org/doc/262577>.

@article{Bloki1993,
author = {Bloki, W., Ferreirim, I.},
journal = {Banach Center Publications},
language = {eng},
number = {1},
pages = {219-230},
title = {Hoops and their implicational reducts (abstract)},
url = {http://eudml.org/doc/262577},
volume = {28},
year = {1993},
}

TY - JOUR
AU - Bloki, W.
AU - Ferreirim, I.
TI - Hoops and their implicational reducts (abstract)
JO - Banach Center Publications
PY - 1993
VL - 28
IS - 1
SP - 219
EP - 230
LA - eng
UR - http://eudml.org/doc/262577
ER -

References

top
  1. [1] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. 25, 3rd ed., Amer. Math. Soc., Providence 1967. 
  2. [2] W. J. Blok and D. Pigozzi, Algebraizable Logics, Mem. Amer. Math. Soc. 396 (1989). Zbl0664.03042
  3. [3] W. J. Blok and D. Pigozzi, On the structure of varieties with equationally definable principal congruences III, Algebra Universalis, to appear. Zbl0817.08004
  4. [4] B. Bosbach, Komplementäre Halbgruppen. Kongruenzen und Quotienten, Fund. Math. 64 (1970), 1-14. 
  5. [5] J. R. Büchi and T. M. Owens, Complemented monoids and hoops, unpublished manuscript. 
  6. [6] C. C. Chang, A new proof of the completeness of the Łukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74-80. Zbl0093.01104
  7. [7] W. H. Cornish, A large variety of BCK-algebras, Math. Japon. 26 (1981), 339-342. Zbl0463.03039
  8. [8] I. M. A. Ferreirim, On varieties and quasivarieties of hoops and their reducts, thesis, Univ. of Illinois at Chicago, 1992. 
  9. [9] I. Fleischer, Every BCK-algebra is a set of residuables in an integral pomonoid, J. Algebra 119 (1988), 360-365. Zbl0658.06012
  10. [10] H. Gaitan, Quasivarieties of Wajsberg algebras, J. Non-Classical Logic 8 (1991), 79-101. Zbl0772.06011
  11. [11] D. Higgs, Dually residuated commutative monoids with identity element do not form an equational class, Math. Japon. 29 (1984), 69-75. Zbl0549.06009
  12. [12] W. C. Holland, A. H. Mekler, and N. R. Reilly, Varieties of lattice-ordered groups in which prime powers commute, Algebra Universalis 23 (1986), 196-214. Zbl0598.06008
  13. [13] Y. Komori, Super-Łukasiewicz implicational logics, Nagoya Math. J. 72 (1978), 127-133. Zbl0363.02015
  14. [14] H. Ono and Y. Komori, Logics without the contraction rule, J. Symbolic Logic 50 (1985), 169-201. Zbl0583.03018
  15. [15] M. Pałasiński, An embedding theorem for BCK-algebras, Math. Seminar Notes Kobe Univ. 10 (1982), 749-751. 
  16. [16] R. Wójcicki, On matrix representations of consequence operations of Łukasiewicz's sentential calculi, Z. Math. Logik Grundlag. Math. 19 (1973), 239-247. Zbl0313.02008
  17. [17] A. Wroński, An algebraic motivation for BCK-algebras, Math. Japon. 30 (1983), 187-193. Zbl0569.03029
  18. [18] A. Wroński, BCK-algebras do not form a variety, ibid. 28 (1983), 211-213., Zbl0518.06014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.