Hoops and their implicational reducts (abstract)

W. Bloki; I. Ferreirim

Banach Center Publications (1993)

  • Volume: 28, Issue: 1, page 219-230
  • ISSN: 0137-6934

How to cite

top

Bloki, W., and Ferreirim, I.. "Hoops and their implicational reducts (abstract)." Banach Center Publications 28.1 (1993): 219-230. <http://eudml.org/doc/262577>.

@article{Bloki1993,
author = {Bloki, W., Ferreirim, I.},
journal = {Banach Center Publications},
language = {eng},
number = {1},
pages = {219-230},
title = {Hoops and their implicational reducts (abstract)},
url = {http://eudml.org/doc/262577},
volume = {28},
year = {1993},
}

TY - JOUR
AU - Bloki, W.
AU - Ferreirim, I.
TI - Hoops and their implicational reducts (abstract)
JO - Banach Center Publications
PY - 1993
VL - 28
IS - 1
SP - 219
EP - 230
LA - eng
UR - http://eudml.org/doc/262577
ER -

References

top
  1. [1] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ. 25, 3rd ed., Amer. Math. Soc., Providence 1967. 
  2. [2] W. J. Blok and D. Pigozzi, Algebraizable Logics, Mem. Amer. Math. Soc. 396 (1989). Zbl0664.03042
  3. [3] W. J. Blok and D. Pigozzi, On the structure of varieties with equationally definable principal congruences III, Algebra Universalis, to appear. Zbl0817.08004
  4. [4] B. Bosbach, Komplementäre Halbgruppen. Kongruenzen und Quotienten, Fund. Math. 64 (1970), 1-14. 
  5. [5] J. R. Büchi and T. M. Owens, Complemented monoids and hoops, unpublished manuscript. 
  6. [6] C. C. Chang, A new proof of the completeness of the Łukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74-80. Zbl0093.01104
  7. [7] W. H. Cornish, A large variety of BCK-algebras, Math. Japon. 26 (1981), 339-342. Zbl0463.03039
  8. [8] I. M. A. Ferreirim, On varieties and quasivarieties of hoops and their reducts, thesis, Univ. of Illinois at Chicago, 1992. 
  9. [9] I. Fleischer, Every BCK-algebra is a set of residuables in an integral pomonoid, J. Algebra 119 (1988), 360-365. Zbl0658.06012
  10. [10] H. Gaitan, Quasivarieties of Wajsberg algebras, J. Non-Classical Logic 8 (1991), 79-101. Zbl0772.06011
  11. [11] D. Higgs, Dually residuated commutative monoids with identity element do not form an equational class, Math. Japon. 29 (1984), 69-75. Zbl0549.06009
  12. [12] W. C. Holland, A. H. Mekler, and N. R. Reilly, Varieties of lattice-ordered groups in which prime powers commute, Algebra Universalis 23 (1986), 196-214. Zbl0598.06008
  13. [13] Y. Komori, Super-Łukasiewicz implicational logics, Nagoya Math. J. 72 (1978), 127-133. Zbl0363.02015
  14. [14] H. Ono and Y. Komori, Logics without the contraction rule, J. Symbolic Logic 50 (1985), 169-201. Zbl0583.03018
  15. [15] M. Pałasiński, An embedding theorem for BCK-algebras, Math. Seminar Notes Kobe Univ. 10 (1982), 749-751. 
  16. [16] R. Wójcicki, On matrix representations of consequence operations of Łukasiewicz's sentential calculi, Z. Math. Logik Grundlag. Math. 19 (1973), 239-247. Zbl0313.02008
  17. [17] A. Wroński, An algebraic motivation for BCK-algebras, Math. Japon. 30 (1983), 187-193. Zbl0569.03029
  18. [18] A. Wroński, BCK-algebras do not form a variety, ibid. 28 (1983), 211-213., Zbl0518.06014

NotesEmbed ?

top

You must be logged in to post comments.