Existence of solutions for a multivalued boundary value problem with non-convex and unbounded right-hand side

Diego Averna; Gabriele Bonanno

Annales Polonici Mathematici (1999)

  • Volume: 71, Issue: 3, page 253-271
  • ISSN: 0066-2216

How to cite

top

Diego Averna, and Gabriele Bonanno. "Existence of solutions for a multivalued boundary value problem with non-convex and unbounded right-hand side." Annales Polonici Mathematici 71.3 (1999): 253-271. <http://eudml.org/doc/262582>.

@article{DiegoAverna1999,
abstract = {},
author = {Diego Averna, Gabriele Bonanno},
journal = {Annales Polonici Mathematici},
keywords = {multivalued differential inclusions; boundary value problems; non-convex and unbounded right-hand side; directional continuous selections; implicit equations; solutions; multivalued boundary value problem; existence},
language = {eng},
number = {3},
pages = {253-271},
title = {Existence of solutions for a multivalued boundary value problem with non-convex and unbounded right-hand side},
url = {http://eudml.org/doc/262582},
volume = {71},
year = {1999},
}

TY - JOUR
AU - Diego Averna
AU - Gabriele Bonanno
TI - Existence of solutions for a multivalued boundary value problem with non-convex and unbounded right-hand side
JO - Annales Polonici Mathematici
PY - 1999
VL - 71
IS - 3
SP - 253
EP - 271
AB -
LA - eng
KW - multivalued differential inclusions; boundary value problems; non-convex and unbounded right-hand side; directional continuous selections; implicit equations; solutions; multivalued boundary value problem; existence
UR - http://eudml.org/doc/262582
ER -

References

top
  1. [1] J. Appell, E. De Pascale, H. T. Nguyê n and P. P. Zabreĭko, Multi-valued superpositions, Dissertationes Math. 345 (1995). 
  2. [2] Z. Artstein and K. Prikry, Carathéodory selections and the Scorza Dragoni property, J. Math. Anal. Appl. 127 (1987), 540-547. Zbl0649.28011
  3. [3] D. Averna, Lusin type theorems for multifunctions, Scorza Dragoni's property and Carathéodory selections, Boll. Un. Mat. Ital. (7) 8-A (1994), 193-202. Zbl0817.28007
  4. [4] G. Bonanno, Two theorems on the Scorza Dragoni property for multifunctions, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 83 (1989), 51-56. Zbl0768.28002
  5. [5] G. Bonanno, Differential inclusions with nonconvex right hand side and applications to implicit integral and differential equations, Rend. Accad. Naz. Sci. (detta dei XL) 20 (1996), 193-203. Zbl0943.34012
  6. [6] A. Bressan, Upper and lower semicontinuous differential inclusions: A unified approach, in: Controllability and Optimal Control, H. Sussmann (ed.), Dekker, New York, 1989, 21-31. 
  7. [7] C. Castaing, A propos de l'existence des sections séparément mesurables et séparément continues d'une multiapplication séparément mesurable et séparément semi-continue inférieurement, Sém. Analyse Convexe, Montpellier 1976, Exp. no. 6. Zbl0356.46045
  8. [8] F. S. De Blasi and G. Pianigiani, Solution sets of boundary value problems for nonconvex differential inclusions, Topol. Methods Nonlinear Anal. 1 (1993), 303-313. Zbl0785.34018
  9. [9] K. Deimling, Multivalued Differential Equations, de Gruyter Ser. Nonlinear Anal. Appl. 1, de Gruyter, Berlin, 1992. 
  10. [10] C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. Zbl0296.28003
  11. [11] J. B. Hiriart-Urruty, Images of connected sets by semicontinuous multifunctions, J. Math. Anal. Appl. 111 (1985), 407-422. 
  12. [12] A. Kucia, Scorza Dragoni type theorems, Fund. Math. 138 (1991), 197-203. Zbl0744.28011
  13. [13] S. A. Marano, Existence theorems for a multivalued boundary value problem, Bull. Austral. Math. Soc. 45 (1992), 249-260. Zbl0741.34008
  14. [14] S. A. Marano, On a boundary value problem for the differential equation f(t,x,x',x'') = 0, J. Math. Anal. Appl. 182 (1994), 309-319. Zbl0801.34031
  15. [15] O. Naselli Ricceri and B. Ricceri, An existence theorem for inclusions of the type Ψ(u)(t) ∈ F(t,Φ(u)(t)) and application to a multivalued boundary value problem, Appl. Anal. 38 (1990), 259-270. Zbl0687.47044
  16. [16] J. Oxtoby, Measure and Category, Springer, New York, 1971. 
  17. [17] B. Ricceri, Applications de théorèmes de semi-continuité inférieure, C. R. Acad. Sci. Paris Sér. I 295 (1982), 75-78. Zbl0509.54008
  18. [18] B. Ricceri, On multifunctions of one real variable, J. Math. Anal. Appl. 295 (1987), 225-236. Zbl0625.54020
  19. [19] B. Ricceri and A. Villani, Openness properties of continuous real functions on connected spaces, Rend. Mat. 2 (1982), 679-687. Zbl0524.54008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.