Existence of solutions for a multivalued boundary value problem with non-convex and unbounded right-hand side

Diego Averna; Gabriele Bonanno

Annales Polonici Mathematici (1999)

  • Volume: 71, Issue: 3, page 253-271
  • ISSN: 0066-2216

How to cite

top

Diego Averna, and Gabriele Bonanno. "Existence of solutions for a multivalued boundary value problem with non-convex and unbounded right-hand side." Annales Polonici Mathematici 71.3 (1999): 253-271. <http://eudml.org/doc/262582>.

@article{DiegoAverna1999,
abstract = {},
author = {Diego Averna, Gabriele Bonanno},
journal = {Annales Polonici Mathematici},
keywords = {multivalued differential inclusions; boundary value problems; non-convex and unbounded right-hand side; directional continuous selections; implicit equations; solutions; multivalued boundary value problem; existence},
language = {eng},
number = {3},
pages = {253-271},
title = {Existence of solutions for a multivalued boundary value problem with non-convex and unbounded right-hand side},
url = {http://eudml.org/doc/262582},
volume = {71},
year = {1999},
}

TY - JOUR
AU - Diego Averna
AU - Gabriele Bonanno
TI - Existence of solutions for a multivalued boundary value problem with non-convex and unbounded right-hand side
JO - Annales Polonici Mathematici
PY - 1999
VL - 71
IS - 3
SP - 253
EP - 271
AB -
LA - eng
KW - multivalued differential inclusions; boundary value problems; non-convex and unbounded right-hand side; directional continuous selections; implicit equations; solutions; multivalued boundary value problem; existence
UR - http://eudml.org/doc/262582
ER -

References

top
  1. [1] J. Appell, E. De Pascale, H. T. Nguyê n and P. P. Zabreĭko, Multi-valued superpositions, Dissertationes Math. 345 (1995). 
  2. [2] Z. Artstein and K. Prikry, Carathéodory selections and the Scorza Dragoni property, J. Math. Anal. Appl. 127 (1987), 540-547. Zbl0649.28011
  3. [3] D. Averna, Lusin type theorems for multifunctions, Scorza Dragoni's property and Carathéodory selections, Boll. Un. Mat. Ital. (7) 8-A (1994), 193-202. Zbl0817.28007
  4. [4] G. Bonanno, Two theorems on the Scorza Dragoni property for multifunctions, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 83 (1989), 51-56. Zbl0768.28002
  5. [5] G. Bonanno, Differential inclusions with nonconvex right hand side and applications to implicit integral and differential equations, Rend. Accad. Naz. Sci. (detta dei XL) 20 (1996), 193-203. Zbl0943.34012
  6. [6] A. Bressan, Upper and lower semicontinuous differential inclusions: A unified approach, in: Controllability and Optimal Control, H. Sussmann (ed.), Dekker, New York, 1989, 21-31. 
  7. [7] C. Castaing, A propos de l'existence des sections séparément mesurables et séparément continues d'une multiapplication séparément mesurable et séparément semi-continue inférieurement, Sém. Analyse Convexe, Montpellier 1976, Exp. no. 6. Zbl0356.46045
  8. [8] F. S. De Blasi and G. Pianigiani, Solution sets of boundary value problems for nonconvex differential inclusions, Topol. Methods Nonlinear Anal. 1 (1993), 303-313. Zbl0785.34018
  9. [9] K. Deimling, Multivalued Differential Equations, de Gruyter Ser. Nonlinear Anal. Appl. 1, de Gruyter, Berlin, 1992. 
  10. [10] C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. Zbl0296.28003
  11. [11] J. B. Hiriart-Urruty, Images of connected sets by semicontinuous multifunctions, J. Math. Anal. Appl. 111 (1985), 407-422. 
  12. [12] A. Kucia, Scorza Dragoni type theorems, Fund. Math. 138 (1991), 197-203. Zbl0744.28011
  13. [13] S. A. Marano, Existence theorems for a multivalued boundary value problem, Bull. Austral. Math. Soc. 45 (1992), 249-260. Zbl0741.34008
  14. [14] S. A. Marano, On a boundary value problem for the differential equation f(t,x,x',x'') = 0, J. Math. Anal. Appl. 182 (1994), 309-319. Zbl0801.34031
  15. [15] O. Naselli Ricceri and B. Ricceri, An existence theorem for inclusions of the type Ψ(u)(t) ∈ F(t,Φ(u)(t)) and application to a multivalued boundary value problem, Appl. Anal. 38 (1990), 259-270. Zbl0687.47044
  16. [16] J. Oxtoby, Measure and Category, Springer, New York, 1971. 
  17. [17] B. Ricceri, Applications de théorèmes de semi-continuité inférieure, C. R. Acad. Sci. Paris Sér. I 295 (1982), 75-78. Zbl0509.54008
  18. [18] B. Ricceri, On multifunctions of one real variable, J. Math. Anal. Appl. 295 (1987), 225-236. Zbl0625.54020
  19. [19] B. Ricceri and A. Villani, Openness properties of continuous real functions on connected spaces, Rend. Mat. 2 (1982), 679-687. Zbl0524.54008

NotesEmbed ?

top

You must be logged in to post comments.