On the motion of nonviscous compressible fluids in domains with boundary
Banach Center Publications (1992)
- Volume: 27, Issue: 2, page 447-455
- ISSN: 0137-6934
Access Full Article
topHow to cite
topSecchi, Paolo. "On the motion of nonviscous compressible fluids in domains with boundary." Banach Center Publications 27.2 (1992): 447-455. <http://eudml.org/doc/262583>.
@article{Secchi1992,
author = {Secchi, Paolo},
journal = {Banach Center Publications},
keywords = {Euler equations; initial-boundary value problem; quasi-linear symmetric hyperbolic system; solid wall boundary condition},
language = {eng},
number = {2},
pages = {447-455},
title = {On the motion of nonviscous compressible fluids in domains with boundary},
url = {http://eudml.org/doc/262583},
volume = {27},
year = {1992},
}
TY - JOUR
AU - Secchi, Paolo
TI - On the motion of nonviscous compressible fluids in domains with boundary
JO - Banach Center Publications
PY - 1992
VL - 27
IS - 2
SP - 447
EP - 455
LA - eng
KW - Euler equations; initial-boundary value problem; quasi-linear symmetric hyperbolic system; solid wall boundary condition
UR - http://eudml.org/doc/262583
ER -
References
top- [1] R. Agemi, The initial boundary value problem for inviscid barotropic fluid motion, Hokkaido Math. J. 10 (1981), 156-182. Zbl0472.76065
- [2] H. Beirão da Veiga, Un théorème d'existence dans la dynamique des fluides compressibles, C. R. Acad. Sci. Paris 289 B (1979), 297-299.
- [3] H. Beirão da Veiga, On the barotropic motion of compressible perfect fluids, Ann. Scuola Norm. Sup. Pisa 8 (1981), 317-351. Zbl0477.76059
- [4] H. Beirão da Veiga, Homogeneous and non-homogeneous boundary value problems for first order linear hyperbolic systems arising in fluid mechanics, Comm. Partial Differential Equations, part I: 7 (1982), 1135-1149, part II: 8 (1983), 407-432. Zbl0503.35052
- [5] D. Ebin, The initial boundary value problem for subsonic fluid motion, Comm. Pure Appl. Math. 32 (1979), 1-19. Zbl0378.76043
- [6] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in: Spectral Theory and Differential Equations, Lecture Notes in Math. 448, Springer, 1975, 25-70.
- [7] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal. 58 (1975), 181-205. Zbl0343.35056
- [8] L. Landau et E. Lifschitz, Mécanique des fluides, Mir, Moscou 1971.
- [9] A. Majda and S. Osher, Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math. 28 (1975), 607-675. Zbl0314.35061
- [10] J. Rauch and F. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc. 189 (1974), 303-318. Zbl0282.35014
- [11] S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit, Comm. Math. Phys. 104 (1986), 49-75. Zbl0612.76082
- [12] P. Secchi, On nonviscous compressible fluids in a time dependent domain, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. Zbl0765.35036
- [13] T. Yanagisawa, The initial boundary value problem for the equations of ideal magneto-hydrodynamics, Hokkaido Math. J. 16 (1987), 295-314. Zbl0657.76085
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.