On the motion of nonviscous compressible fluids in domains with boundary

Paolo Secchi

Banach Center Publications (1992)

  • Volume: 27, Issue: 2, page 447-455
  • ISSN: 0137-6934

How to cite

top

Secchi, Paolo. "On the motion of nonviscous compressible fluids in domains with boundary." Banach Center Publications 27.2 (1992): 447-455. <http://eudml.org/doc/262583>.

@article{Secchi1992,
author = {Secchi, Paolo},
journal = {Banach Center Publications},
keywords = {Euler equations; initial-boundary value problem; quasi-linear symmetric hyperbolic system; solid wall boundary condition},
language = {eng},
number = {2},
pages = {447-455},
title = {On the motion of nonviscous compressible fluids in domains with boundary},
url = {http://eudml.org/doc/262583},
volume = {27},
year = {1992},
}

TY - JOUR
AU - Secchi, Paolo
TI - On the motion of nonviscous compressible fluids in domains with boundary
JO - Banach Center Publications
PY - 1992
VL - 27
IS - 2
SP - 447
EP - 455
LA - eng
KW - Euler equations; initial-boundary value problem; quasi-linear symmetric hyperbolic system; solid wall boundary condition
UR - http://eudml.org/doc/262583
ER -

References

top
  1. [1] R. Agemi, The initial boundary value problem for inviscid barotropic fluid motion, Hokkaido Math. J. 10 (1981), 156-182. Zbl0472.76065
  2. [2] H. Beirão da Veiga, Un théorème d'existence dans la dynamique des fluides compressibles, C. R. Acad. Sci. Paris 289 B (1979), 297-299. 
  3. [3] H. Beirão da Veiga, On the barotropic motion of compressible perfect fluids, Ann. Scuola Norm. Sup. Pisa 8 (1981), 317-351. Zbl0477.76059
  4. [4] H. Beirão da Veiga, Homogeneous and non-homogeneous boundary value problems for first order linear hyperbolic systems arising in fluid mechanics, Comm. Partial Differential Equations, part I: 7 (1982), 1135-1149, part II: 8 (1983), 407-432. Zbl0503.35052
  5. [5] D. Ebin, The initial boundary value problem for subsonic fluid motion, Comm. Pure Appl. Math. 32 (1979), 1-19. Zbl0378.76043
  6. [6] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, in: Spectral Theory and Differential Equations, Lecture Notes in Math. 448, Springer, 1975, 25-70. 
  7. [7] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal. 58 (1975), 181-205. Zbl0343.35056
  8. [8] L. Landau et E. Lifschitz, Mécanique des fluides, Mir, Moscou 1971. 
  9. [9] A. Majda and S. Osher, Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math. 28 (1975), 607-675. Zbl0314.35061
  10. [10] J. Rauch and F. Massey, Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc. 189 (1974), 303-318. Zbl0282.35014
  11. [11] S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit, Comm. Math. Phys. 104 (1986), 49-75. Zbl0612.76082
  12. [12] P. Secchi, On nonviscous compressible fluids in a time dependent domain, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. Zbl0765.35036
  13. [13] T. Yanagisawa, The initial boundary value problem for the equations of ideal magneto-hydrodynamics, Hokkaido Math. J. 16 (1987), 295-314. Zbl0657.76085

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.