Existence of global solution of a nonlinear wave equation with short-range potential
Banach Center Publications (1992)
- Volume: 27, Issue: 1, page 163-167
- ISSN: 0137-6934
Access Full Article
topHow to cite
topGeorgiev, V., and Ianakiev, K.. "Existence of global solution of a nonlinear wave equation with short-range potential." Banach Center Publications 27.1 (1992): 163-167. <http://eudml.org/doc/262588>.
@article{Georgiev1992,
author = {Georgiev, V., Ianakiev, K.},
journal = {Banach Center Publications},
keywords = {existence of global solution; nonlinear wave equation with short-range potential},
language = {eng},
number = {1},
pages = {163-167},
title = {Existence of global solution of a nonlinear wave equation with short-range potential},
url = {http://eudml.org/doc/262588},
volume = {27},
year = {1992},
}
TY - JOUR
AU - Georgiev, V.
AU - Ianakiev, K.
TI - Existence of global solution of a nonlinear wave equation with short-range potential
JO - Banach Center Publications
PY - 1992
VL - 27
IS - 1
SP - 163
EP - 167
LA - eng
KW - existence of global solution; nonlinear wave equation with short-range potential
UR - http://eudml.org/doc/262588
ER -
References
top- [1] P. Datti, Long time existence of classical solutions to a non-linear wave equation in exterior domains, Ph.D. Dissertation, New York University, 1985.
- [2] P. Godin, Long time behaviour of solutions to some nonlinear rotation invariant mixed problems, Comm. Partial Differential Equations 14 (3) (1989), 299-374. Zbl0676.35065
- [3] L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. I, Distribution Theory and Fourier Analysis, Springer, New York 1983. Zbl0521.35001
- [4] L. Hörmander, Non-linear Hyperbolic Differential Equations, Lectures 1986-1987, Lund 1988.
- [5] F. John, Blow-up for quasi-linear wave equations in three space dimensions, Comm. Pure Appl. Math. 34 (1981), 20-51. Zbl0453.35060
- [6] S. Klainerman, The null condition and global existence to nonlinear wave equations, in: Lectures in Appl. Math. 23, Part 1, Amer. Math. Soc., Providence, R.I., 1986, 293-326.
- [7] S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math. 38 (1985), 321-332. Zbl0635.35059
- [8] C. Morawetz, Energy decay for star-shaped obstacles, Appendix 3 in: P. Lax and R. Phillips, Scattering Theory, Academic Press, New York 1967.
- [9] H. Pecher, Scattering for semilinear wave equations with small initial data in three space dimensions, Math. Z. 198 (1988), 277-288. Zbl0627.35064
- [10] Y. Shibata and Y. Tsutsumi, On global existence theorem of small amplitude solutions for nonlinear wave equations in exterior domains, ibid. 191 (1986), 165-199. Zbl0592.35028
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.