Existence of global solution of a nonlinear wave equation with short-range potential

V. Georgiev; K. Ianakiev

Banach Center Publications (1992)

  • Volume: 27, Issue: 1, page 163-167
  • ISSN: 0137-6934

How to cite

top

Georgiev, V., and Ianakiev, K.. "Existence of global solution of a nonlinear wave equation with short-range potential." Banach Center Publications 27.1 (1992): 163-167. <http://eudml.org/doc/262588>.

@article{Georgiev1992,
author = {Georgiev, V., Ianakiev, K.},
journal = {Banach Center Publications},
keywords = {existence of global solution; nonlinear wave equation with short-range potential},
language = {eng},
number = {1},
pages = {163-167},
title = {Existence of global solution of a nonlinear wave equation with short-range potential},
url = {http://eudml.org/doc/262588},
volume = {27},
year = {1992},
}

TY - JOUR
AU - Georgiev, V.
AU - Ianakiev, K.
TI - Existence of global solution of a nonlinear wave equation with short-range potential
JO - Banach Center Publications
PY - 1992
VL - 27
IS - 1
SP - 163
EP - 167
LA - eng
KW - existence of global solution; nonlinear wave equation with short-range potential
UR - http://eudml.org/doc/262588
ER -

References

top
  1. [1] P. Datti, Long time existence of classical solutions to a non-linear wave equation in exterior domains, Ph.D. Dissertation, New York University, 1985. 
  2. [2] P. Godin, Long time behaviour of solutions to some nonlinear rotation invariant mixed problems, Comm. Partial Differential Equations 14 (3) (1989), 299-374. Zbl0676.35065
  3. [3] L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. I, Distribution Theory and Fourier Analysis, Springer, New York 1983. Zbl0521.35001
  4. [4] L. Hörmander, Non-linear Hyperbolic Differential Equations, Lectures 1986-1987, Lund 1988. 
  5. [5] F. John, Blow-up for quasi-linear wave equations in three space dimensions, Comm. Pure Appl. Math. 34 (1981), 20-51. Zbl0453.35060
  6. [6] S. Klainerman, The null condition and global existence to nonlinear wave equations, in: Lectures in Appl. Math. 23, Part 1, Amer. Math. Soc., Providence, R.I., 1986, 293-326. 
  7. [7] S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math. 38 (1985), 321-332. Zbl0635.35059
  8. [8] C. Morawetz, Energy decay for star-shaped obstacles, Appendix 3 in: P. Lax and R. Phillips, Scattering Theory, Academic Press, New York 1967. 
  9. [9] H. Pecher, Scattering for semilinear wave equations with small initial data in three space dimensions, Math. Z. 198 (1988), 277-288. Zbl0627.35064
  10. [10] Y. Shibata and Y. Tsutsumi, On global existence theorem of small amplitude solutions for nonlinear wave equations in exterior domains, ibid. 191 (1986), 165-199. Zbl0592.35028

NotesEmbed ?

top

You must be logged in to post comments.