Chaos in some planar nonautonomous polynomial differential equation

Klaudiusz Wójcik

Annales Polonici Mathematici (2000)

  • Volume: 73, Issue: 2, page 159-168
  • ISSN: 0066-2216

Abstract

top
We show that under some assumptions on the function f the system ż = z ̅ ( f ( z ) e i ϕ t + e i 2 ϕ t ) generates chaotic dynamics for sufficiently small parameter ϕ. We use the topological method based on the Lefschetz fixed point theorem and the Ważewski retract theorem.

How to cite

top

Wójcik, Klaudiusz. "Chaos in some planar nonautonomous polynomial differential equation." Annales Polonici Mathematici 73.2 (2000): 159-168. <http://eudml.org/doc/262600>.

@article{Wójcik2000,
abstract = {We show that under some assumptions on the function f the system $ż = z̅(f(z) e^\{iϕt\} + e^\{i2ϕt\})$ generates chaotic dynamics for sufficiently small parameter ϕ. We use the topological method based on the Lefschetz fixed point theorem and the Ważewski retract theorem.},
author = {Wójcik, Klaudiusz},
journal = {Annales Polonici Mathematici},
keywords = {periodic solutions; fixed point index; Lefschetz number; chaos; chaotic dynamics; Lefschetz fixed point theorem; Ważewski retract theorem; isolating segment; Poincaré map},
language = {eng},
number = {2},
pages = {159-168},
title = {Chaos in some planar nonautonomous polynomial differential equation},
url = {http://eudml.org/doc/262600},
volume = {73},
year = {2000},
}

TY - JOUR
AU - Wójcik, Klaudiusz
TI - Chaos in some planar nonautonomous polynomial differential equation
JO - Annales Polonici Mathematici
PY - 2000
VL - 73
IS - 2
SP - 159
EP - 168
AB - We show that under some assumptions on the function f the system $ż = z̅(f(z) e^{iϕt} + e^{i2ϕt})$ generates chaotic dynamics for sufficiently small parameter ϕ. We use the topological method based on the Lefschetz fixed point theorem and the Ważewski retract theorem.
LA - eng
KW - periodic solutions; fixed point index; Lefschetz number; chaos; chaotic dynamics; Lefschetz fixed point theorem; Ważewski retract theorem; isolating segment; Poincaré map
UR - http://eudml.org/doc/262600
ER -

References

top
  1. [Ma] J. Mawhin, Periodic solutions of some planar non-autonomous polynomial differential equations, J. Differential Integral Equations 7 (1994), 1055-1061. Zbl0802.34045
  2. [MMZ] R. Manásevich, J. Mawhin and F. Zanolin, Periodic solutions of complex-valued differential equations and systems with periodic coefficients, J. Differential Equations 126 (1996), 355-373. Zbl0848.34027
  3. [MM] K. Mischaikow and M. Mrozek, Chaos in Lorenz equations: a computer assisted proof, Bull. Amer. Math. Soc. 32 (1995), 66-72. Zbl0820.58042
  4. [S] R. Srzednicki, Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations, Nonlinear Anal. 22 (1994), 707-737. Zbl0801.34041
  5. [S1] R. Srzednicki, On periodic solutions of planar differential equations with periodic coefficients, J. Differential Equations 114 (1994), 77-100. Zbl0811.34031
  6. [SW] R. Srzednicki and K. Wójcik, A geometric method for detecting chaotic dynamics, ibid. 135 (1997), 66-82. Zbl0873.58049
  7. [W] S. Wiggins, Global Bifurcation and Chaos. Analytical Methods, Springer, New York, 1988. Zbl0661.58001
  8. [W1] K. Wójcik, Isolating segments and symbolic dynamics, Nonlinear Anal. 33 (1998), 575-591. Zbl0955.37005
  9. [W2] K. Wójcik, On detecting periodic solutions and chaos in ODE's, ibid., to appear. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.