Unilateral problems for elliptic systems with gradient constraints

T. Rozhkovskaya

Banach Center Publications (1992)

  • Volume: 27, Issue: 2, page 425-445
  • ISSN: 0137-6934

How to cite

top

Rozhkovskaya, T.. "Unilateral problems for elliptic systems with gradient constraints." Banach Center Publications 27.2 (1992): 425-445. <http://eudml.org/doc/262607>.

@article{Rozhkovskaya1992,
author = {Rozhkovskaya, T.},
journal = {Banach Center Publications},
keywords = {variational inequalities; penalty method; regularization},
language = {eng},
number = {2},
pages = {425-445},
title = {Unilateral problems for elliptic systems with gradient constraints},
url = {http://eudml.org/doc/262607},
volume = {27},
year = {1992},
}

TY - JOUR
AU - Rozhkovskaya, T.
TI - Unilateral problems for elliptic systems with gradient constraints
JO - Banach Center Publications
PY - 1992
VL - 27
IS - 2
SP - 425
EP - 445
LA - eng
KW - variational inequalities; penalty method; regularization
UR - http://eudml.org/doc/262607
ER -

References

top
  1. [1] A. A. Arkhipova, Regularity of the solution of a system of variational inequalities with constraint in N , Vestnik Leningrad. Univ. 1984 (13), 5-9 (in Russian). 
  2. [2] A. A. Arkhipova, Regularity of the problem with an obstacle up to the boundary for strongly elliptic operators, in: Some Applications of Functional Analysis to Problems of Mathematical Physics, Inst. Math., Siberian Branch of Acad. Sci. USSR, Novosibirsk 1988, 3-20 (in Russian). 
  3. [3] A. A. Arkhipova, Minimal supersolutions for the obstacle problem, Izv. Akad. Nauk SSSR 37 (1973), 1156-1185 (in Russian). 
  4. [4] A. A. Arkhipova and N. N. Ural'tseva, The regularity of solutions of variational inequalities under convex boundary constraints for a class of non-linear operators, Vestnik Leningrad. Univ. 1987 (15), 13-19 (in Russian). 
  5. [5] L. Caffarelli, Further regularity for the Signorini problem, Comm. Partial Differential Equations 4 (1979), 1067-1075. Zbl0427.35019
  6. [6] L. C. Evans, A second order elliptic equation with gradient constraint, ibid. 4 (1979), 555-572 and 1199. Zbl0448.35036
  7. [7] A. Friedman, Variational Principles and Free-Boundary Problems, Wiley, New York 1982. Zbl0564.49002
  8. [8] S. Hildebrandt and K.-O. Widman, Variational inequalities for vector-valued functions, J. Reine Angew. Math. 309 (1979), 191-220. Zbl0408.49012
  9. [9] H. Ishii and S. Koike, Boundary regularity and uniqueness for an elliptic equation with gradient constraint, Comm. Partial Differential Equations 8 (1983), 317-346. Zbl0538.35012
  10. [10] R. Jensen, Regularity for elastic-plastic type variational inequalities, Indiana Univ. Math. J. 32 (1983), 407-423. Zbl0554.35052
  11. [11] D. Kinderlehrer, The smoothness of the solution of the boundary obstacle problem, J. Math. Pures Appl. 60 (1981), 193-212. Zbl0459.35092
  12. [12] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Acad. Press, New York 1980. Zbl0457.35001
  13. [13] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Nauka, Moscow 1973 (in Russian). 
  14. [14] H. Lewy and G. Stampacchia, On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math. 22 (1969), 153-188. Zbl0167.11501
  15. [15] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris 1969. Zbl0189.40603
  16. [16] T. N. Rozhkovskaya, Unilateral problems with convex constraints on the gradient, in: Partial Differential Equations, Proc. S. L. Sobolev Seminar, Novosibirsk 1981, 78-85 (in Russian). 
  17. [17] T. N. Rozhkovskaya, The smoothness of the solutions of the variational inequalities with gradient constraints, in: The Imbedding Theorems and Their Applications, Proc. S. L. Sobolev Seminar, Novosibirsk 1982, 128-138 (in Russian). 
  18. [18] T. N. Rozhkovskaya, On one-sided problems for non-linear operators with convex constraints on the gradient of the solution, Dokl. Akad. Nauk SSSR 268 (1983), 38-41 (in Russian). English transl. in Soviet Math. Dokl. 27 (1983). Zbl0536.35027
  19. [19] T. N. Rozhkovskaya, The regularity theorem for a unilateral problem with the convex constraints on the gradient of the solution, in: Problemy Mat. Anal. 9, Izdat. Leningrad. Univ., Leningrad 1984, 166-171; English transl. in J. Soviet Math. 35 (1) (1986). Zbl0643.35031
  20. [20] T. N. Rozhkovskaya, Unilateral problems for elliptic operators with convex constraints on the gradient of the solution, Sibirsk. Mat. Zh. 26 (3) (1985), 134-146 and 26 (5) (1985), 150-158 (in Russian). Zbl0598.35049
  21. [21] T. N. Rozhkovskaya, One-sided problems for parabolic quasilinear operators, Dokl. Akad. Nauk SSSR 290 (3) (1986), 549-552 (in Russian). 
  22. [22] T. N. Rozhkovskaya, Unilateral problems with convex constraints for quasilinear parabolic operators, Sibirsk. Mat. Zh. 29 (5) (1988), 198-211 (in Russian). Zbl0677.35060
  23. [23] G. M. Troianiello, Maximal and minimal solutions to a class of elliptic quasilinear problems, Proc. Amer. Math. Soc. 91 (1) (1984), 95-101. Zbl0524.35051
  24. [24] N. N. Ural'tseva, Hölder continuity of gradients of solutions of parabolic equations under the Signorini conditions on the boundary, Dokl. Akad. Nauk SSSR 280 (3) (1985), 563-565 (in Russian). 
  25. [25] N. N. Ural'tseva, On the regularity of solutions of variational inequalities, Uspekhi Mat. Nauk 42 (6) (1987), 151-174 (in Russian). 
  26. [26] M. Wiegner, The C 1 , 1 -character of solutions of second order elliptic equations with gradient constraint, Comm. Partial Differential Equations 6 (1981), 361-371. Zbl0458.35035
  27. [27] G. H. Williams, Nonlinear nonhomogeneous elliptic variational inequalities with a nonconstant gradient constraint, J. Math. Pures Appl. 60 (2) (1981), 213-226. Zbl0467.49005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.