Analytic hypoellipticity and local solvability for a class of pseudo-differential operators with symplectic characteristics
Banach Center Publications (1996)
- Volume: 33, Issue: 1, page 315-335
- ISSN: 0137-6934
Access Full Article
topHow to cite
topSakurai, Tsutomu. "Analytic hypoellipticity and local solvability for a class of pseudo-differential operators with symplectic characteristics." Banach Center Publications 33.1 (1996): 315-335. <http://eudml.org/doc/262608>.
@article{Sakurai1996,
author = {Sakurai, Tsutomu},
journal = {Banach Center Publications},
keywords = {microlocal analytic regularity},
language = {eng},
number = {1},
pages = {315-335},
title = {Analytic hypoellipticity and local solvability for a class of pseudo-differential operators with symplectic characteristics},
url = {http://eudml.org/doc/262608},
volume = {33},
year = {1996},
}
TY - JOUR
AU - Sakurai, Tsutomu
TI - Analytic hypoellipticity and local solvability for a class of pseudo-differential operators with symplectic characteristics
JO - Banach Center Publications
PY - 1996
VL - 33
IS - 1
SP - 315
EP - 335
LA - eng
KW - microlocal analytic regularity
UR - http://eudml.org/doc/262608
ER -
References
top- [1] L. Boutet de Monvel, Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure Appl. Math. 27 (1974), 585-639. Zbl0294.35020
- [2] L. Boutet de Monvel, A. Grigis et B. Helffer, Paramétrixes d'opérateurs pseudo-différentiels à caractéristiques multiples, Astérisque 34-35 (1976), 93-121.
- [3] A. Grigis and L. P. Rothschild, A criterion for analytic hypoellipticity of a class of differential operators with polynomial coefficients, Ann. Math. 118 (1983), 443-460. Zbl0541.35017
- [4] V. V. Grushin, On a class of elliptic pseudodifferential operators degenerate on a submanifold, Math. USSR-Sb. 13 (1971), 155-185. Zbl0238.47038
- [5] B. Helffer, Sur l'hypoellipticité des opérateurs pseudodifférentiels à caractéristiques multiples (perte de 3/2 dérivées), Bull. Soc. Math. France 51-52 (1977), 13-61.
- [6] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1980.
- [7] M. Kashiwara, T. Kawai and T. Oshima, Structure of cohomology groups whose coefficients are microfunction solution sheaves of systems of pseudo-differential equations with multiple characteristics I, Proc. Japan Acad. 50 (1974), 420-425. Zbl0307.35081
- [8] G. Métivier, Analytic hypoellipticity for operators with multiple characteristics, Comm. Partial Differential Equations, 6 (1981), 1-90. Zbl0455.35040
- [9] A. Melin, Parametrix constructions for some right invariant operators on the Heisenberg group, ibid., 1363-1405. Zbl0486.35007
- [10] M. Sato, T. Kawai and M. Kashiwara, Microfunctions and Pseudo-Differential Operators, Lecture Notes in Math. 287, Springer, 1973, 265-529. Zbl0277.46039
- [11] J. Sjöstrand, Parametrix for pseudodifferential operators with multiple characteristics, Ark. Mat. 12 (1974), 85-130. Zbl0317.35076
- [12] E. M. Stein, An example on the Heisenberg group related to the Lewy operator, Invent. Math. 69 (1982), 209-216. Zbl0515.58032
- [13] F. Treves, Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications, Comm. Partial Differential Equations 3 (1978), 475-642. Zbl0384.35055
- [14] F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Vols. I, II, Plenum Press, New York and London, 1981. Zbl0453.47027
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.