Analytic hypoellipticity and local solvability for a class of pseudo-differential operators with symplectic characteristics

Tsutomu Sakurai

Banach Center Publications (1996)

  • Volume: 33, Issue: 1, page 315-335
  • ISSN: 0137-6934

How to cite

top

Sakurai, Tsutomu. "Analytic hypoellipticity and local solvability for a class of pseudo-differential operators with symplectic characteristics." Banach Center Publications 33.1 (1996): 315-335. <http://eudml.org/doc/262608>.

@article{Sakurai1996,
author = {Sakurai, Tsutomu},
journal = {Banach Center Publications},
keywords = {microlocal analytic regularity},
language = {eng},
number = {1},
pages = {315-335},
title = {Analytic hypoellipticity and local solvability for a class of pseudo-differential operators with symplectic characteristics},
url = {http://eudml.org/doc/262608},
volume = {33},
year = {1996},
}

TY - JOUR
AU - Sakurai, Tsutomu
TI - Analytic hypoellipticity and local solvability for a class of pseudo-differential operators with symplectic characteristics
JO - Banach Center Publications
PY - 1996
VL - 33
IS - 1
SP - 315
EP - 335
LA - eng
KW - microlocal analytic regularity
UR - http://eudml.org/doc/262608
ER -

References

top
  1. [1] L. Boutet de Monvel, Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure Appl. Math. 27 (1974), 585-639. Zbl0294.35020
  2. [2] L. Boutet de Monvel, A. Grigis et B. Helffer, Paramétrixes d'opérateurs pseudo-différentiels à caractéristiques multiples, Astérisque 34-35 (1976), 93-121. 
  3. [3] A. Grigis and L. P. Rothschild, A criterion for analytic hypoellipticity of a class of differential operators with polynomial coefficients, Ann. Math. 118 (1983), 443-460. Zbl0541.35017
  4. [4] V. V. Grushin, On a class of elliptic pseudodifferential operators degenerate on a submanifold, Math. USSR-Sb. 13 (1971), 155-185. Zbl0238.47038
  5. [5] B. Helffer, Sur l'hypoellipticité des opérateurs pseudodifférentiels à caractéristiques multiples (perte de 3/2 dérivées), Bull. Soc. Math. France 51-52 (1977), 13-61. 
  6. [6] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1980. 
  7. [7] M. Kashiwara, T. Kawai and T. Oshima, Structure of cohomology groups whose coefficients are microfunction solution sheaves of systems of pseudo-differential equations with multiple characteristics I, Proc. Japan Acad. 50 (1974), 420-425. Zbl0307.35081
  8. [8] G. Métivier, Analytic hypoellipticity for operators with multiple characteristics, Comm. Partial Differential Equations, 6 (1981), 1-90. Zbl0455.35040
  9. [9] A. Melin, Parametrix constructions for some right invariant operators on the Heisenberg group, ibid., 1363-1405. Zbl0486.35007
  10. [10] M. Sato, T. Kawai and M. Kashiwara, Microfunctions and Pseudo-Differential Operators, Lecture Notes in Math. 287, Springer, 1973, 265-529. Zbl0277.46039
  11. [11] J. Sjöstrand, Parametrix for pseudodifferential operators with multiple characteristics, Ark. Mat. 12 (1974), 85-130. Zbl0317.35076
  12. [12] E. M. Stein, An example on the Heisenberg group related to the Lewy operator, Invent. Math. 69 (1982), 209-216. Zbl0515.58032
  13. [13] F. Treves, Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications, Comm. Partial Differential Equations 3 (1978), 475-642. Zbl0384.35055
  14. [14] F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators, Vols. I, II, Plenum Press, New York and London, 1981. Zbl0453.47027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.