# A counterexample to a conjecture of Drużkowski and Rusek

Annales Polonici Mathematici (1995)

- Volume: 62, Issue: 2, page 173-176
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topArno van den Essen. "A counterexample to a conjecture of Drużkowski and Rusek." Annales Polonici Mathematici 62.2 (1995): 173-176. <http://eudml.org/doc/262620>.

@article{ArnovandenEssen1995,

abstract = {Let F = X + H be a cubic homogeneous polynomial automorphism from $ℂ^n$ to $ℂ^n$. Let $p$ be the nilpotence index of the Jacobian matrix JH. It was conjectured by Drużkowski and Rusek in [4] that $deg F^\{-1\} ≤ 3^\{p-1\}$. We show that the conjecture is true if n ≤ 4 and false if n ≥ 5.},

author = {Arno van den Essen},

journal = {Annales Polonici Mathematici},

keywords = {polynomial automorphisms; Jacobian Conjecture; polynomial automorphism; Jacobian matrix},

language = {eng},

number = {2},

pages = {173-176},

title = {A counterexample to a conjecture of Drużkowski and Rusek},

url = {http://eudml.org/doc/262620},

volume = {62},

year = {1995},

}

TY - JOUR

AU - Arno van den Essen

TI - A counterexample to a conjecture of Drużkowski and Rusek

JO - Annales Polonici Mathematici

PY - 1995

VL - 62

IS - 2

SP - 173

EP - 176

AB - Let F = X + H be a cubic homogeneous polynomial automorphism from $ℂ^n$ to $ℂ^n$. Let $p$ be the nilpotence index of the Jacobian matrix JH. It was conjectured by Drużkowski and Rusek in [4] that $deg F^{-1} ≤ 3^{p-1}$. We show that the conjecture is true if n ≤ 4 and false if n ≥ 5.

LA - eng

KW - polynomial automorphisms; Jacobian Conjecture; polynomial automorphism; Jacobian matrix

UR - http://eudml.org/doc/262620

ER -

## References

top- [1] H. Bass, E. Connell, and D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982), 287-330. Zbl0539.13012
- [2] L. M. Drużkowski, An effective approach to Keller's Jacobian Conjecture, Math. Ann. 264 (1983), 303-313. Zbl0504.13006
- [3] L. M. Drużkowski, The Jacobian Conjecture: some steps towards solution, in: Automorphisms of Affine Spaces, Proc. Conf. 'Invertible Polynomial Maps', Curaçao, July 4-8, 1994, A. R. P. van den Essen (ed.), Caribbean Mathematics Foundation, Kluwer Academic Publishers, 1995, 41-54. Zbl0839.13012
- [4] L. M. Drużkowski and K. Rusek, The formal inverse and the Jacobian conjecture, Ann. Polon. Math. 46 (1985), 85-90. Zbl0644.12010
- [5] E.-M. G. M. Hubbers, The Jacobian Conjecture: cubic homogeneous maps in dimension four, master thesis, Univ. of Nijmegen, February 17, 1994; directed by A. R. P. van den Essen.
- [6] K. Rusek and T. Winiarski, Polynomial automorphisms of ${C}^{n}$, Univ. Iagel. Acta Math. 24 (1984), 143-149.
- [7] A. V. Yagzhev, On Keller's problem, Siberian Math. J. 21 (1980), 747-754. Zbl0466.13009
- [8] J.-T. Yu, On the Jacobian Conjecture: reduction of coefficients, J. Algebra 171 (1995), 515-523. Zbl0816.13017

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.