-convergence of Bernstein-Kantorovich-type operators
Michele Campiti; Giorgio Metafune
Annales Polonici Mathematici (1996)
- Volume: 63, Issue: 3, page 273-280
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topMichele Campiti, and Giorgio Metafune. "$L^p$-convergence of Bernstein-Kantorovich-type operators." Annales Polonici Mathematici 63.3 (1996): 273-280. <http://eudml.org/doc/262624>.
@article{MicheleCampiti1996,
abstract = {We study a Kantorovich-type modification of the operators introduced in [1] and we characterize their convergence in the $L^p$-norm. We also furnish a quantitative estimate of the convergence.},
author = {Michele Campiti, Giorgio Metafune},
journal = {Annales Polonici Mathematici},
keywords = {Kantorovich operators; quantitative estimates},
language = {eng},
number = {3},
pages = {273-280},
title = {$L^p$-convergence of Bernstein-Kantorovich-type operators},
url = {http://eudml.org/doc/262624},
volume = {63},
year = {1996},
}
TY - JOUR
AU - Michele Campiti
AU - Giorgio Metafune
TI - $L^p$-convergence of Bernstein-Kantorovich-type operators
JO - Annales Polonici Mathematici
PY - 1996
VL - 63
IS - 3
SP - 273
EP - 280
AB - We study a Kantorovich-type modification of the operators introduced in [1] and we characterize their convergence in the $L^p$-norm. We also furnish a quantitative estimate of the convergence.
LA - eng
KW - Kantorovich operators; quantitative estimates
UR - http://eudml.org/doc/262624
ER -
References
top- [1] M. Campiti and G. Metafune, Approximation properties of recursively defined Bernstein-type operators, preprint, 1994. Zbl0865.41027
- [2] M. Campiti and G. Metafune, Evolution equations associated with recursively defined Bernstein-type operators, preprint, 1994. Zbl0874.41010
- [3] G. G. Lorentz, Bernstein Polynomials, 2nd ed., Chelsea, New York, 1986.
- [4] B. Sendov and V. A. Popov, The Averaged Moduli of Smoothness, Pure Appl. Math., Wiley, 1988. Zbl0653.65002
- [5] E. C. Titchmarsh, The Theory of Functions, Oxford University Press, Oxford, 1939. Zbl0022.14602
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.