# Some properties of exponentially harmonic maps

Banach Center Publications (1992)

- Volume: 27, Issue: 1, page 129-136
- ISSN: 0137-6934

## Access Full Article

top## How to cite

topEells, James, and Lemaire, Luc. "Some properties of exponentially harmonic maps." Banach Center Publications 27.1 (1992): 129-136. <http://eudml.org/doc/262631>.

@article{Eells1992,

author = {Eells, James, Lemaire, Luc},

journal = {Banach Center Publications},

keywords = {harmonic maps; exponentially harmonic maps},

language = {eng},

number = {1},

pages = {129-136},

title = {Some properties of exponentially harmonic maps},

url = {http://eudml.org/doc/262631},

volume = {27},

year = {1992},

}

TY - JOUR

AU - Eells, James

AU - Lemaire, Luc

TI - Some properties of exponentially harmonic maps

JO - Banach Center Publications

PY - 1992

VL - 27

IS - 1

SP - 129

EP - 136

LA - eng

KW - harmonic maps; exponentially harmonic maps

UR - http://eudml.org/doc/262631

ER -

## References

top- [1] G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551-561. Zbl0158.05001
- [2] G. Aronsson, On certain singular solutions of the partial differential equation ${u}_{x}^{2}{u}_{x}x+2{u}_{x}{u}_{y}{u}_{x}y+{u}_{y}^{2}{u}_{y}y=0$, Manuscripta Math. 47 (1984), 133-151.
- [3] P. Baird and J. , Eells, A conservation law for harmonic maps, in: Geometry Symp. Utrecht 1980, Lecture Notes in Math. 894, Springer 1981, 1-25.
- [4] M. Carpenter, The calculus of variations on a Riemannian manifold: regularity theory and the status of the Euler-Lagrange necessary condition, M.Sc. dissertation, Warwick 1991.
- [5] D. M. Duc and J. Eells, Regularity of exponentially harmonic functions, Internat. J. Math., to appear. Zbl0751.58007
- [6] J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS Regional Conf. Ser. Math. 50, Amer. Math. Soc., 1983. Zbl0515.58011
- [7] J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524. Zbl0669.58009
- [8] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Non-linear Elliptic Theory, Ann. of Math. Stud. 105, Princeton Univ. Press 1983.
- [9] C. Morrey, Multiple Integrals in the Calculus of Variations, Grundlehren Math. Wiss. 130, Springer, 1966. Zbl0142.38701
- [10] R. Schoen, Analytic aspects of the harmonic map problem, in: Math. Sci. Res. Inst. Publ. 2, Springer, 1984, 321-358.
- [11] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London A 264 (1969), 413-496. Zbl0181.38003
- [12] L. M. Sibner and R. J. Sibner, A non-linear Hodge-de Rham theorem, Acta Math. 125 (1970), 57-73. Zbl0216.45703
- [13] R. T. Smith, The second variation formula for harmonic mappings, Proc. Amer. Math. Soc. 47 (1975), 229-236. Zbl0303.58008

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.