Some properties of exponentially harmonic maps

James Eells; Luc Lemaire

Banach Center Publications (1992)

  • Volume: 27, Issue: 1, page 129-136
  • ISSN: 0137-6934

How to cite

top

Eells, James, and Lemaire, Luc. "Some properties of exponentially harmonic maps." Banach Center Publications 27.1 (1992): 129-136. <http://eudml.org/doc/262631>.

@article{Eells1992,
author = {Eells, James, Lemaire, Luc},
journal = {Banach Center Publications},
keywords = {harmonic maps; exponentially harmonic maps},
language = {eng},
number = {1},
pages = {129-136},
title = {Some properties of exponentially harmonic maps},
url = {http://eudml.org/doc/262631},
volume = {27},
year = {1992},
}

TY - JOUR
AU - Eells, James
AU - Lemaire, Luc
TI - Some properties of exponentially harmonic maps
JO - Banach Center Publications
PY - 1992
VL - 27
IS - 1
SP - 129
EP - 136
LA - eng
KW - harmonic maps; exponentially harmonic maps
UR - http://eudml.org/doc/262631
ER -

References

top
  1. [1] G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551-561. Zbl0158.05001
  2. [2] G. Aronsson, On certain singular solutions of the partial differential equation u x 2 u x x + 2 u x u y u x y + u y 2 u y y = 0 , Manuscripta Math. 47 (1984), 133-151. 
  3. [3] P. Baird and J. , Eells, A conservation law for harmonic maps, in: Geometry Symp. Utrecht 1980, Lecture Notes in Math. 894, Springer 1981, 1-25. 
  4. [4] M. Carpenter, The calculus of variations on a Riemannian manifold: regularity theory and the status of the Euler-Lagrange necessary condition, M.Sc. dissertation, Warwick 1991. 
  5. [5] D. M. Duc and J. Eells, Regularity of exponentially harmonic functions, Internat. J. Math., to appear. Zbl0751.58007
  6. [6] J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS Regional Conf. Ser. Math. 50, Amer. Math. Soc., 1983. Zbl0515.58011
  7. [7] J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385-524. Zbl0669.58009
  8. [8] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Non-linear Elliptic Theory, Ann. of Math. Stud. 105, Princeton Univ. Press 1983. 
  9. [9] C. Morrey, Multiple Integrals in the Calculus of Variations, Grundlehren Math. Wiss. 130, Springer, 1966. Zbl0142.38701
  10. [10] R. Schoen, Analytic aspects of the harmonic map problem, in: Math. Sci. Res. Inst. Publ. 2, Springer, 1984, 321-358. 
  11. [11] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London A 264 (1969), 413-496. Zbl0181.38003
  12. [12] L. M. Sibner and R. J. Sibner, A non-linear Hodge-de Rham theorem, Acta Math. 125 (1970), 57-73. Zbl0216.45703
  13. [13] R. T. Smith, The second variation formula for harmonic mappings, Proc. Amer. Math. Soc. 47 (1975), 229-236. Zbl0303.58008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.