On the local meromorphic extension of CR meromorphic mappings

Joël Merker; Egmont Porten

Annales Polonici Mathematici (1998)

  • Volume: 70, Issue: 1, page 163-193
  • ISSN: 0066-2216

Abstract

top
Let M be a generic CR submanifold in m + n , m = CR dim M ≥ 1, n = codim M ≥ 1, d = dim M = 2m + n. A CR meromorphic mapping (in the sense of Harvey-Lawson) is a triple ( f , f , [ Γ f ] ) , where: 1) f : f Y is a ¹-smooth mapping defined over a dense open subset f of M with values in a projective manifold Y; 2) the closure Γ f of its graph in m + n × Y defines an oriented scarred ¹-smooth CR manifold of CR dimension m (i.e. CR outside a closed thin set) and 3) d [ Γ f ] = 0 in the sense of currents. We prove that ( f , f , [ Γ f ] ) extends meromorphically to a wedge attached to M if M is everywhere minimal and ω (real-analytic) or if M is a 2 , α globally minimal hypersurface.

How to cite

top

Joël Merker, and Egmont Porten. "On the local meromorphic extension of CR meromorphic mappings." Annales Polonici Mathematici 70.1 (1998): 163-193. <http://eudml.org/doc/262638>.

@article{JoëlMerker1998,
abstract = {Let M be a generic CR submanifold in $ℂ^\{m+n\}$, m = CR dim M ≥ 1, n = codim M ≥ 1, d = dim M = 2m + n. A CR meromorphic mapping (in the sense of Harvey-Lawson) is a triple $(f,_f,[Γ_f])$, where: 1) $f: _f → Y$ is a ¹-smooth mapping defined over a dense open subset $_f$ of M with values in a projective manifold Y; 2) the closure $Γ_f$ of its graph in $ℂ^\{m+n\} × Y$ defines an oriented scarred ¹-smooth CR manifold of CR dimension m (i.e. CR outside a closed thin set) and 3) $d[Γ_f] = 0$ in the sense of currents. We prove that $(f,_f,[Γ_f])$ extends meromorphically to a wedge attached to M if M is everywhere minimal and $^ω$ (real-analytic) or if M is a $^\{2,α\}$ globally minimal hypersurface.},
author = {Joël Merker, Egmont Porten},
journal = {Annales Polonici Mathematici},
keywords = {CR generic currents; scarred CR manifolds; removable singularities for CR functions; deformations of analytic discs; CR meromorphic mappings},
language = {eng},
number = {1},
pages = {163-193},
title = {On the local meromorphic extension of CR meromorphic mappings},
url = {http://eudml.org/doc/262638},
volume = {70},
year = {1998},
}

TY - JOUR
AU - Joël Merker
AU - Egmont Porten
TI - On the local meromorphic extension of CR meromorphic mappings
JO - Annales Polonici Mathematici
PY - 1998
VL - 70
IS - 1
SP - 163
EP - 193
AB - Let M be a generic CR submanifold in $ℂ^{m+n}$, m = CR dim M ≥ 1, n = codim M ≥ 1, d = dim M = 2m + n. A CR meromorphic mapping (in the sense of Harvey-Lawson) is a triple $(f,_f,[Γ_f])$, where: 1) $f: _f → Y$ is a ¹-smooth mapping defined over a dense open subset $_f$ of M with values in a projective manifold Y; 2) the closure $Γ_f$ of its graph in $ℂ^{m+n} × Y$ defines an oriented scarred ¹-smooth CR manifold of CR dimension m (i.e. CR outside a closed thin set) and 3) $d[Γ_f] = 0$ in the sense of currents. We prove that $(f,_f,[Γ_f])$ extends meromorphically to a wedge attached to M if M is everywhere minimal and $^ω$ (real-analytic) or if M is a $^{2,α}$ globally minimal hypersurface.
LA - eng
KW - CR generic currents; scarred CR manifolds; removable singularities for CR functions; deformations of analytic discs; CR meromorphic mappings
UR - http://eudml.org/doc/262638
ER -

References

top
  1. [1] E. Chirka, Complex Analytic Sets, Kluwer, Dordrecht, 1989. Zbl0683.32002
  2. [2] E. M. Chirka and E. L. Stout, Removable singularities in the boundary, in: Contributions to Complex Analysis and Analytic Geometry, Aspects of Math. E26, Vieweg, 1994, 43-104. Zbl0820.32008
  3. [3] T.-C. Dinh and F. Sarkis, Wedge removability of metrically thin sets and application to the CR meromorphic extension, preprint, 1997. 
  4. [4] P. Dolbeault et G. M. Henkin, Chaînes holomorphes de bord donné dans n , Bull. Soc. Math. France 125 (1997), 383-446. 
  5. [5] F. R. Harvey and H. B. Lawson, On boundaries of complex analytic varieties, Ann. of Math., I: 102 (1975), 233-290; II: 106 (1977), 213-238. Zbl0317.32017
  6. [6] S. M. Ivashkovich, The Hartogs-type extension theorem for meromorphic maps into compact Kähler manifolds, Invent. Math. 109 (1992), 47-54. Zbl0738.32008
  7. [7] B. Jöricke, Removable singularities for CR-functions, Ark. Mat. 26 (1988), 117-143. Zbl0653.32013
  8. [8] B. Jöricke, Envelopes of holomorphy and CR-invariant subsets of CR-manifolds, C. R. Acad. Sci. Paris Sér. I 315 (1992), 407-411. Zbl0767.32010
  9. [9] B. Jöricke, Deformation of CR- manifolds, minimal points and CR-manifolds with the microlocal analytic extension property, J. Geom. Anal. 6 (1996), 555-611. Zbl0917.32007
  10. [10] B. Jöricke, Some remarks concerning holomorphically convex hulls and envelope of holomorphy, Math. Z. 218 (1995), 143-157. Zbl0816.32011
  11. [11] B. Jöricke, Boundaries of singularity sets, removable singularities, and CR-invariant subsets of CR-manifolds, preprint, 1996. Zbl0964.32031
  12. [12] G. Lupacciolu, A theorem on holomorphic extension of CR-functions, Pacific J. Math. 124 (1986), 177-191. Zbl0597.32014
  13. [13] C. Laurent-Thiébaut, Sur l'extension de fonctions CR dans une variété de Stein, Ann. Mat. Pura Appl. (4) 150 (1988), 141-151. Zbl0646.32010
  14. [14] J. Merker, Global minimality of generic manifolds and holomorphic extendibility of CR functions, Internat. Math. Res. Notices 8 (1994), 329-342. Zbl0815.32007
  15. [15] J. Merker, On removable singularities for CR functions in higher codimension, ibid. 1 (1997), 21-56. Zbl0880.32009
  16. [16] J. Merker and E. Porten, On removable singularities for integrable CR functions, preprint, 1997; available at: http://www.dmi.ens.fr/EDITION/preprints. Zbl0935.32010
  17. [17] E. Porten, thesis, Berlin, 1996. 
  18. [18] E. Porten, A Hartogs-Bochner type theorem for continuous CR mappings, manuscript, 1997. 
  19. [19] F. Sarkis, CR meromorphic extension and the non embedding of the Andreotti-Rossi CR structure in the projective space, Internat. J. Math., to appear. Zbl1110.32308
  20. [20] B. Shiffman, Separately meromorphic mappings into Kähler manifolds, in: Contributions to Complex Analysis and Analytic Geometry, Aspects of Math. E26, Vieweg, 1994, 243-250. Zbl0873.32024
  21. [21] J.-M. Trépreau, Sur la propagation des singularités dans les variétés CR, Bull. Soc. Math. France 118 (1990), 403-450. 
  22. [22] A. E. Tumanov, Connections and propagation of analyticity for CR functions, Duke Math. J. 73 (1994), 1-24. Zbl0801.32005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.