# On a class of nonlinear elliptic equations

Banach Center Publications (1992)

- Volume: 27, Issue: 1, page 75-80
- ISSN: 0137-6934

## Access Full Article

top## How to cite

topChipot, M.. "On a class of nonlinear elliptic equations." Banach Center Publications 27.1 (1992): 75-80. <http://eudml.org/doc/262646>.

@article{Chipot1992,

author = {Chipot, M.},

journal = {Banach Center Publications},

keywords = {multiplicity of solutions},

language = {eng},

number = {1},

pages = {75-80},

title = {On a class of nonlinear elliptic equations},

url = {http://eudml.org/doc/262646},

volume = {27},

year = {1992},

}

TY - JOUR

AU - Chipot, M.

TI - On a class of nonlinear elliptic equations

JO - Banach Center Publications

PY - 1992

VL - 27

IS - 1

SP - 75

EP - 80

LA - eng

KW - multiplicity of solutions

UR - http://eudml.org/doc/262646

ER -

## References

top- [AW] L. Alfonsi and F. B. Weissler, Blow up in ${\mathbb{R}}^{n}$ for a parabolic equation with a damping nonlinear gradient term, preprint. Zbl0795.35051
- [CV] M. Chipot and F. Voirol, in preparation.
- [CW₁] M. Chipot and F. B. Weissler, Some blow up results for a nonlinear parabolic equation with a gradient term, SIAM J. Math. Anal. 20 (4) (1989), 886-907. Zbl0682.35010
- [CW₂] M. Chipot and F. B. Weissler, Nonlinear Diffusion Equations and Their Equilibrium States, Math. Sci. Res. Inst. Publ. 12, Vol. 1, Springer, 1988.
- [F] M. Fila, Remarks on blow up for a nonlinear parabolic equation with a gradient term, Proc. Amer. Math. Soc. 111 (1991), 795-801. Zbl0768.35047
- [KP] B. Kawohl and L. A. Peletier, Observations on blow up and dead cores for nonlinear parabolic equations, Math. Z. 202 (1989), 207-217. Zbl0661.35053
- [GNN] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243. Zbl0425.35020
- [GT] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1985.
- [P₁] S. I. Pokhozhaev, Solvability of an elliptic problem in ${\mathbb{R}}^{N}$ with supercritical nonlinearity exponent, Dokl. Akad. Nauk SSSR 313 (6) (1990), 1356-1360 (in Russian).
- [P₂] S. I. Pokhozhaev, Positivity classes of elliptic operators in ${\mathbb{R}}^{N}$ with supercritical nonlinearity exponent, ibid. 314 (1990), 558-561 (in Russian).
- [Q] P. Quittner, Blow up for semilinear parabolic equations with a gradient term, preprint. Zbl0768.35049
- [V] F. Voirol, Thesis, University of Metz, in preparation.
- [W] F. B. Weissler, private communication.

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.