Stability of nonautonomous systems by Liapunov's direct method
Banach Center Publications (1995)
- Volume: 32, Issue: 1, page 9-17
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D. Aeyels and R. Sepulchre, On the convergence of a time-variant linear differential equation arising in identification, to appear in Kybernetika. Zbl0832.93051
- [2] B. D. O. Anderson, Exponential stability of linear equations arising in adaptive identification, IEEE Trans. Automat. Control 22 (1977), 84-88. Zbl0346.93014
- [3] E. A. Barbashin and N. N. Krasovskii, Stability of motion in the large, Dokl. Akad. Nauk SSSR 86 (1952), 453-456.
- [4] H. K. Khalil, Nonlinear Systems, Macmillan Publishing Company, New York, 1992.
- [5] G. Kreisselmeier, Adaptive observers with exponential rate of convergence, Trans. Automat. Control 22 (1977), 2-8. Zbl0346.93043
- [6] J. P. LaSalle, Stability of nonautonomous systems, Nonlinear Anal. 1 (1976), 83-91. Zbl0355.34037
- [7] N. Rouche, P. Habets and M. Laloy, Stability Theory by Liapunov's Direct Method, Springer-Verlag, New York, 1977. Zbl0364.34022
- [8] J. L. Willems, Stability Theory of Dynamical Systems, Nelson, London, 1970.