Two-dimensional real symmetric spaces with maximal projection constant
Bruce Chalmers; Grzegorz Lewicki
Annales Polonici Mathematici (2000)
- Volume: 73, Issue: 2, page 119-134
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. L. Chalmers, C. Franchetti and M. Giaquinta, On the self-length of two-dimensional Banach spaces, Bull. Austral. Math. Soc. 53 (1996), 101-107. Zbl0854.46012
- [2] B. L. Chalmers and F. T. Metcalf, The determination of minimal projections and extensions in L¹, Trans. Amer. Math. Soc. 329 (1992), 289-305. Zbl0753.41018
- [3] B. L. Chalmers and F. T. Metcalf, A characterization and equations for minimal projections and extensions, J. Operator Theory 32 (1994), 31-46. Zbl0827.41016
- [4] B. L. Chalmers and F. T. Metcalf, A simple formula showing L¹ is a maximal overspace for two-dimensional real spaces, Ann. Polon. Math. 56 (1992), 303-309. Zbl0808.46016
- [5] H. Koenig, Projections onto symmetric spaces, Quaestiones Math. 18 (1995), 199-220. Zbl0827.46005
- [6] J. Lindenstrauss, On the extension of operators with a finite-dimensional range, Illinois J. Math. 8 (1964), 488-499. Zbl0132.09803
- [7] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Wiley, New York, 1989.
- [8] D. Yost, L₁ contains every two-dimensional normed space, Ann. Polon. Math. 49 (1988), 17-19. Zbl0679.46016