On ∂̅-problems on (pseudo)-convex domains
Banach Center Publications (1995)
- Volume: 31, Issue: 1, page 311-320
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [Ba1] D. Barrett, Irregularity of the Bergman projection on a smooth bounded domain in , Ann. of Math. 119 (1984), 431-436. Zbl0566.32016
- [Ba2] D. Barrett, Behavior of the Bergman projection on the Diederich-Fornaess Worm, preprint. Zbl0779.32013
- [BL] S. R. Bell and E. Ligocka, A simplification and extension of Fefferman's Theorem on biholomorphic mappings, Invent. Math. 57 (1980), 283-289. Zbl0411.32010
- [Be1] B. Berndtsson, Weighted estimates for the -equation in domains in , Duke Math. J. 66 (1992), 239-255.
- [Be2] B. Berndtsson, A smoothly bounded pseudoconvex domain in where estimates don’t hold, Ark. Mat., to appear.
- [Be3] B. Berndtsson, Some recent results on estimates for the ∂̅-equation, preprint, 1992.
- [Br] J. Bertrams, Randregularität von Lösungen der ∂̅-Gleichung auf den Polyzylinder und zweidimensionalen analytischen Polyedern, Bonner Math. Schr. 176 (1986). Zbl0622.32001
- [BD] P. Bonneau and K. Diederich, Integral solution operators for the Cauchy-Riemann equations on pseudoconvex domains, Math. Ann. 286 (1990), 77-100. Zbl0698.47020
- [BS] H. P. Boas and E. J. Straube, Sobolev estimates for the ∂̅-Neumann operator on domains admitting a defining function that is plurisubharmonic on the boundary, Math. Z. 206 (1991), 81-88. Zbl0696.32008
- [Bo] A.Boggess, CR Manifolds and the Tangential Cauchy Riemann Complex, CRC Press, Boca Raton, FL, 1991.
- [Bu] K. Burke, Duality of the Bergman Spaces on Some Weakly Pseudoconvex Domains, Ph.D. Dissertation, SUNY at Albany, New York, 1991.
- [Ca1] D. Catlin, Necessary conditions for subellipticity of the ∂̅-Neumann problem, Ann. of Math. 117 (1983), 147-171. Zbl0552.32017
- [Ca2] D. Catlin, Subelliptic estimates for the ∂̅-Neumann problem on pseudoconvex domains, ibid. 126 (1987), 131-191. Zbl0627.32013
- [Ca3] D. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), 429-466. Zbl0661.32030
- [CNS] D. C. Chang, A. Nagel and E. M. Stein, Estimates for the ∂̅-Neumann problem in pseudoconvex domains of finite type in , Acta Math. 169 (1992), 153-228. Zbl0821.32011
- [CC] J. Chaumat et A.-M. Chollet, Estimations hölderiennes pour les équations de Cauchy-Riemann dans les convexes compacts de , Math. Z. 207 (1991), 501-534. Zbl0748.32008
- [Ch] S. C. Chen, Global regularity of the ∂̅-Neumann problem in dimension two, in: Proc. Sympos. Pure Math. 52 (1991), 55-61.
- [Da1] J. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. 115 (1982), 615-637.
- [Da2] J. D'Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, Boca Raton, FL, 1993.
- [DF] K. Diederich and J. E. Fornaess, Pseudoconvex domains with real analytic boundary, Ann. of Math. 107 (1978), 371-384. Zbl0378.32014
- [DFW] K. Diederich, J. E. Fornaess and J. Wiegerinck, Sharp Hölder estimates for ∂̅ on ellipsoids, Manuscripta Math. 56 (1986), 399-413.
- [FeK] C. L. Fefferman and J. J. Kohn, Hölder estimates on domains in two complex dimensions and on three dimensional CR manifolds, Adv. in Math. 69 (1988), 233-303.
- [FKM] C. L. Fefferman, J. J. Kohn, and M. Machedon, Hölder estimates on CR manifolds with a diagonalizable Levi form, ibid. 84 (1990), 1-90. Zbl0763.32004
- [FoK] G. Folland and J. Kohn, The Neumann Problem for the Cauchy-Riemann complex, Ann. of Math. Stud., Princeton, 1972. Zbl0247.35093
- [FS1] J. E. Fornaess and N. Sibony, estimates for ∂̅, in: Proc. Sympos. Pure Math. 52 (1991), 129-163.
- [FS2] J. E. Fornaess and N. Sibony, Smooth pseudoconvex domains in for which the Corona theorem and estimates for ∂̅ fail, preprint, 1992.
- [GL] H. Grauert und I. Lieb, Das Ramirezsche Integral und die Lösung der Gleichung ∂̅f=α im Bereich der beschränkten Formen, Rice Univ. Stud. 56 (1970), 29-50. Zbl0217.39202
- [Gr] P. Greiner, Subelliptic estimates of ∂̅-Neumann problem , J. Differential Geom. 9 (1974), 239-260.
- [He] G. M. Henkin, Integral representations in strictly pseudoconvex domains and applications to the ∂̅-problem, Mat. Sb. 82 (1970), 300-308; Math. USSR-Sb. 11 (1970), 273-281.
- [HL] G. M. Henkin and J. Leiterer, Theory of Functions on Complex Manifolds, Akademie-Verlag, Berlin, 1984.
- [Hö] L. Hörmander, -estimates and existence theorems for the ∂̅-operators, Acta Math. 113 (1965), 89-152. Zbl0158.11002
- [Ko1] J. J. Kohn, Harmonic integrals on strongly pseudoconvex manifolds I, II, Ann. of Math. 2 (1963), 112-148; ibid. 79 (1964), 450-472.
- [Ko2] J. J. Kohn, Global regularity for ∂̅ on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273-292.
- [Ko3] J. J. Kohn, Boundary behavior of ∂̅ on weakly pseudoconvex manifolds of dimension two, J. Differential Geom. 6 (1972), 523-542. Zbl0256.35060
- [Ko4] J. J. Kohn, Subellipticity of the ∂̅-Neumann problem on pseudoconvex domains: Sufficient conditions, Acta Math. 142 (1979), 79-122. Zbl0395.35069
- [LR1] I. Lieb and R. M. Range, Integral representations and estimates in the theory of the ∂̅-Neumann problem, Ann. of Math. 123 (1986), 265-301. Zbl0589.32034
- [LR2] I. Lieb and R. M. Range, The kernel of the ∂̅-Neumann operator on strictly pseudoconvex domains, Math. Ann. 278 (1987), 151-173. Zbl0637.35057
- [Mc1] J. McNeal, Boundary behaviour of the Bergman kernel function in , Duke Math. J. 58 (1989), 499-512.
- [Mc2] J. McNeal, Estimates for the Bergman kernel on convex domains, preprint.
- [PS] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms, I, Acta Math. 157 (1986), 99-157; II, Invent. Math. 86 (1986), 75-113. Zbl0622.42011
- [Po] J. Polking, The Cauchy-Riemann equation on convex sets, in: Proc. Sympos. Pure Math. 52 (1993), 309-322.
- [Ra1] R. M. Range, On Hölder estimates for ∂̅u=f on weakly pseudoconvex domains, in: Proc. Int. Conf. Cortona, 1976-77, Scuola Norm. Sup. Pisa, 1978, 247-267.
- [Ra2] R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer, New York, 1986. Zbl0591.32002
- [Ra3] R. M. Range, Integral kernels and Hölder estimates for ∂̅ on pseudoconvex domains of finite type in , Math. Ann. 288 (1990), 63-74.
- [Ra4] R. M. Range, On Hölder and BMO estimates for ∂̅ on convex domains in , J. Geom. Anal. 2 (1992), 575-584. Zbl0768.32013
- [Si] N. Sibony, Un exemple de domaine pseudoconvexe régulier où l'équation ∂̅u=f n'admet pas de solution bornée pour f bornée, Invent. Math. 62 (1980), 235-242. Zbl0429.32026