On ∂̅-problems on (pseudo)-convex domains

R. Range

Banach Center Publications (1995)

  • Volume: 31, Issue: 1, page 311-320
  • ISSN: 0137-6934

Abstract

top
In this survey we shall tour the area of multidimensional complex analysis which centers around ∂̅-problems (i.e., the Cauchy-Riemann equations) on pseudoconvex domains. Along the way we shall highlight some of the classical milestones as well as more recent landmarks, and we shall discuss some of the major open problems and conjectures. For the sake of simplicity we will only consider domains in n ; intriguing phenomena occur already in the simple setting of (Euclidean) convex domains. We will not discuss at all the closely related theory of the induced Cauchy-Riemann equations on boundaries of domains or on submanifolds of higher codimension. The reader interested in such ̅ b -problems may consult the recent monograph of Boggess [Bo].

How to cite

top

Range, R.. "On ∂̅-problems on (pseudo)-convex domains." Banach Center Publications 31.1 (1995): 311-320. <http://eudml.org/doc/262662>.

@article{Range1995,
abstract = {In this survey we shall tour the area of multidimensional complex analysis which centers around ∂̅-problems (i.e., the Cauchy-Riemann equations) on pseudoconvex domains. Along the way we shall highlight some of the classical milestones as well as more recent landmarks, and we shall discuss some of the major open problems and conjectures. For the sake of simplicity we will only consider domains in $ℂ^n$; intriguing phenomena occur already in the simple setting of (Euclidean) convex domains. We will not discuss at all the closely related theory of the induced Cauchy-Riemann equations on boundaries of domains or on submanifolds of higher codimension. The reader interested in such $∂̅_b$-problems may consult the recent monograph of Boggess [Bo].},
author = {Range, R.},
journal = {Banach Center Publications},
keywords = {Cauchy-Riemann equations; -problem; subelliptic estimates},
language = {eng},
number = {1},
pages = {311-320},
title = {On ∂̅-problems on (pseudo)-convex domains},
url = {http://eudml.org/doc/262662},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Range, R.
TI - On ∂̅-problems on (pseudo)-convex domains
JO - Banach Center Publications
PY - 1995
VL - 31
IS - 1
SP - 311
EP - 320
AB - In this survey we shall tour the area of multidimensional complex analysis which centers around ∂̅-problems (i.e., the Cauchy-Riemann equations) on pseudoconvex domains. Along the way we shall highlight some of the classical milestones as well as more recent landmarks, and we shall discuss some of the major open problems and conjectures. For the sake of simplicity we will only consider domains in $ℂ^n$; intriguing phenomena occur already in the simple setting of (Euclidean) convex domains. We will not discuss at all the closely related theory of the induced Cauchy-Riemann equations on boundaries of domains or on submanifolds of higher codimension. The reader interested in such $∂̅_b$-problems may consult the recent monograph of Boggess [Bo].
LA - eng
KW - Cauchy-Riemann equations; -problem; subelliptic estimates
UR - http://eudml.org/doc/262662
ER -

References

top
  1. [Ba1] D. Barrett, Irregularity of the Bergman projection on a smooth bounded domain in 2 , Ann. of Math. 119 (1984), 431-436. Zbl0566.32016
  2. [Ba2] D. Barrett, Behavior of the Bergman projection on the Diederich-Fornaess Worm, preprint. Zbl0779.32013
  3. [BL] S. R. Bell and E. Ligocka, A simplification and extension of Fefferman's Theorem on biholomorphic mappings, Invent. Math. 57 (1980), 283-289. Zbl0411.32010
  4. [Be1] B. Berndtsson, Weighted estimates for the ̅ -equation in domains in , Duke Math. J. 66 (1992), 239-255. 
  5. [Be2] B. Berndtsson, A smoothly bounded pseudoconvex domain in 2 where L estimates don’t hold, Ark. Mat., to appear. 
  6. [Be3] B. Berndtsson, Some recent results on estimates for the ∂̅-equation, preprint, 1992. 
  7. [Br] J. Bertrams, Randregularität von Lösungen der ∂̅-Gleichung auf den Polyzylinder und zweidimensionalen analytischen Polyedern, Bonner Math. Schr. 176 (1986). Zbl0622.32001
  8. [BD] P. Bonneau and K. Diederich, Integral solution operators for the Cauchy-Riemann equations on pseudoconvex domains, Math. Ann. 286 (1990), 77-100. Zbl0698.47020
  9. [BS] H. P. Boas and E. J. Straube, Sobolev estimates for the ∂̅-Neumann operator on domains admitting a defining function that is plurisubharmonic on the boundary, Math. Z. 206 (1991), 81-88. Zbl0696.32008
  10. [Bo] A.Boggess, CR Manifolds and the Tangential Cauchy Riemann Complex, CRC Press, Boca Raton, FL, 1991. 
  11. [Bu] K. Burke, Duality of the Bergman Spaces on Some Weakly Pseudoconvex Domains, Ph.D. Dissertation, SUNY at Albany, New York, 1991. 
  12. [Ca1] D. Catlin, Necessary conditions for subellipticity of the ∂̅-Neumann problem, Ann. of Math. 117 (1983), 147-171. Zbl0552.32017
  13. [Ca2] D. Catlin, Subelliptic estimates for the ∂̅-Neumann problem on pseudoconvex domains, ibid. 126 (1987), 131-191. Zbl0627.32013
  14. [Ca3] D. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), 429-466. Zbl0661.32030
  15. [CNS] D. C. Chang, A. Nagel and E. M. Stein, Estimates for the ∂̅-Neumann problem in pseudoconvex domains of finite type in 2 , Acta Math. 169 (1992), 153-228. Zbl0821.32011
  16. [CC] J. Chaumat et A.-M. Chollet, Estimations hölderiennes pour les équations de Cauchy-Riemann dans les convexes compacts de n , Math. Z. 207 (1991), 501-534. Zbl0748.32008
  17. [Ch] S. C. Chen, Global regularity of the ∂̅-Neumann problem in dimension two, in: Proc. Sympos. Pure Math. 52 (1991), 55-61. 
  18. [Da1] J. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. 115 (1982), 615-637. 
  19. [Da2] J. D'Angelo, Several Complex Variables and the Geometry of Real Hypersurfaces, CRC Press, Boca Raton, FL, 1993. 
  20. [DF] K. Diederich and J. E. Fornaess, Pseudoconvex domains with real analytic boundary, Ann. of Math. 107 (1978), 371-384. Zbl0378.32014
  21. [DFW] K. Diederich, J. E. Fornaess and J. Wiegerinck, Sharp Hölder estimates for ∂̅ on ellipsoids, Manuscripta Math. 56 (1986), 399-413. 
  22. [FeK] C. L. Fefferman and J. J. Kohn, Hölder estimates on domains in two complex dimensions and on three dimensional CR manifolds, Adv. in Math. 69 (1988), 233-303. 
  23. [FKM] C. L. Fefferman, J. J. Kohn, and M. Machedon, Hölder estimates on CR manifolds with a diagonalizable Levi form, ibid. 84 (1990), 1-90. Zbl0763.32004
  24. [FoK] G. Folland and J. Kohn, The Neumann Problem for the Cauchy-Riemann complex, Ann. of Math. Stud., Princeton, 1972. Zbl0247.35093
  25. [FS1] J. E. Fornaess and N. Sibony, L p estimates for ∂̅, in: Proc. Sympos. Pure Math. 52 (1991), 129-163. 
  26. [FS2] J. E. Fornaess and N. Sibony, Smooth pseudoconvex domains in 2 for which the Corona theorem and L p estimates for ∂̅ fail, preprint, 1992. 
  27. [GL] H. Grauert und I. Lieb, Das Ramirezsche Integral und die Lösung der Gleichung ∂̅f=α im Bereich der beschränkten Formen, Rice Univ. Stud. 56 (1970), 29-50. Zbl0217.39202
  28. [Gr] P. Greiner, Subelliptic estimates of ∂̅-Neumann problem 2 , J. Differential Geom. 9 (1974), 239-260. 
  29. [He] G. M. Henkin, Integral representations in strictly pseudoconvex domains and applications to the ∂̅-problem, Mat. Sb. 82 (1970), 300-308; Math. USSR-Sb. 11 (1970), 273-281. 
  30. [HL] G. M. Henkin and J. Leiterer, Theory of Functions on Complex Manifolds, Akademie-Verlag, Berlin, 1984. 
  31. [Hö] L. Hörmander, L 2 -estimates and existence theorems for the ∂̅-operators, Acta Math. 113 (1965), 89-152. Zbl0158.11002
  32. [Ko1] J. J. Kohn, Harmonic integrals on strongly pseudoconvex manifolds I, II, Ann. of Math. 2 (1963), 112-148; ibid. 79 (1964), 450-472. 
  33. [Ko2] J. J. Kohn, Global regularity for ∂̅ on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273-292. 
  34. [Ko3] J. J. Kohn, Boundary behavior of ∂̅ on weakly pseudoconvex manifolds of dimension two, J. Differential Geom. 6 (1972), 523-542. Zbl0256.35060
  35. [Ko4] J. J. Kohn, Subellipticity of the ∂̅-Neumann problem on pseudoconvex domains: Sufficient conditions, Acta Math. 142 (1979), 79-122. Zbl0395.35069
  36. [LR1] I. Lieb and R. M. Range, Integral representations and estimates in the theory of the ∂̅-Neumann problem, Ann. of Math. 123 (1986), 265-301. Zbl0589.32034
  37. [LR2] I. Lieb and R. M. Range, The kernel of the ∂̅-Neumann operator on strictly pseudoconvex domains, Math. Ann. 278 (1987), 151-173. Zbl0637.35057
  38. [Mc1] J. McNeal, Boundary behaviour of the Bergman kernel function in 2 , Duke Math. J. 58 (1989), 499-512. 
  39. [Mc2] J. McNeal, Estimates for the Bergman kernel on convex domains, preprint. 
  40. [PS] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals, and Radon transforms, I, Acta Math. 157 (1986), 99-157; II, Invent. Math. 86 (1986), 75-113. Zbl0622.42011
  41. [Po] J. Polking, The Cauchy-Riemann equation on convex sets, in: Proc. Sympos. Pure Math. 52 (1993), 309-322. 
  42. [Ra1] R. M. Range, On Hölder estimates for ∂̅u=f on weakly pseudoconvex domains, in: Proc. Int. Conf. Cortona, 1976-77, Scuola Norm. Sup. Pisa, 1978, 247-267. 
  43. [Ra2] R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer, New York, 1986. Zbl0591.32002
  44. [Ra3] R. M. Range, Integral kernels and Hölder estimates for ∂̅ on pseudoconvex domains of finite type in 2 , Math. Ann. 288 (1990), 63-74. 
  45. [Ra4] R. M. Range, On Hölder and BMO estimates for ∂̅ on convex domains in 2 , J. Geom. Anal. 2 (1992), 575-584. Zbl0768.32013
  46. [Si] N. Sibony, Un exemple de domaine pseudoconvexe régulier où l'équation ∂̅u=f n'admet pas de solution bornée pour f bornée, Invent. Math. 62 (1980), 235-242. Zbl0429.32026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.