# Oscillation of a logistic equation with delay and diffusion

Annales Polonici Mathematici (1995)

- Volume: 62, Issue: 3, page 219-230
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topSheng Li Xie, and Sui Sun Cheng. "Oscillation of a logistic equation with delay and diffusion." Annales Polonici Mathematici 62.3 (1995): 219-230. <http://eudml.org/doc/262672>.

@article{ShengLiXie1995,

abstract = {This paper establishes oscillation theorems for a class of functional parabolic equations which arises from logistic population models with delays and diffusion.},

author = {Sheng Li Xie, Sui Sun Cheng},

journal = {Annales Polonici Mathematici},

keywords = {oscillation theorem; functional parabolic differential equation; logistic equation; oscillation; averaging technique},

language = {eng},

number = {3},

pages = {219-230},

title = {Oscillation of a logistic equation with delay and diffusion},

url = {http://eudml.org/doc/262672},

volume = {62},

year = {1995},

}

TY - JOUR

AU - Sheng Li Xie

AU - Sui Sun Cheng

TI - Oscillation of a logistic equation with delay and diffusion

JO - Annales Polonici Mathematici

PY - 1995

VL - 62

IS - 3

SP - 219

EP - 230

AB - This paper establishes oscillation theorems for a class of functional parabolic equations which arises from logistic population models with delays and diffusion.

LA - eng

KW - oscillation theorem; functional parabolic differential equation; logistic equation; oscillation; averaging technique

UR - http://eudml.org/doc/262672

ER -

## References

top- [1] A. Ardito and P. Ricciardi, Existence and regularity for linear delay partial differential equations, Nonlinear Anal. 4 (1980), 411-414. Zbl0433.35066
- [2] D. D. Bainov and D. P. Mishev, Oscillation Theory for Neutral Differential Equations with Delay, Adam Hilger, Bristol, 1991. Zbl0747.34037
- [3] K. Gopalsamy, M. R. S. Kulenovic and G. Ladas, Time lags in a 'food limited' population model, Appl. Anal. 31 (1988), 225-237. Zbl0639.34070
- [4] K. Gopalsamy, M. R. S. Kulenovic and G. Ladas, Oscillations of a system of delay logistic equations, J. Math. Anal. Appl. 146 (1990), 192-202. Zbl0686.34066
- [5] I. Györi and G. Ladas, Oscillation Theory of Delay Differential Equations, Clarendon Press, Oxford, 1991. Zbl0780.34048
- [6] B. R. Hunt and J. A. Yorke, When all solutions of ${x}^{\text{'}}=-\sum {q}_{i}\left(t\right)x(t-{T}_{i}\left(t\right))$ oscillate, J. Differential Equations 53 (1984), 139-145. Zbl0571.34057
- [7] K. Kreith and G. Ladas, Allowable delays for positive diffusion processes, Hiroshima Math. J. 15 (1985), 437-443. Zbl0591.35025
- [8] G. Ladas and I. P. Stavroulakis, On delay differential inequalities of first order, Funkcial. Ekvac. 25 (1982), 105-113.
- [9] C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc. 200 (1974), 395-418. Zbl0299.35085
- [10] J. Turo, Generalized solutions of mixed problems for quasilinear hyperbolic systems of functional partial differential equations in the Schauder canonic form, Ann. Polon. Math. 50 (1989), 157-183. Zbl0717.35051