Properties of the Sobolev space
Annales Polonici Mathematici (1999)
- Volume: 71, Issue: 2, page 199-209
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topHenryk Kołakowski. "Properties of the Sobolev space $H_k^{s,s^{\prime }}$." Annales Polonici Mathematici 71.2 (1999): 199-209. <http://eudml.org/doc/262677>.
@article{HenrykKołakowski1999,
	abstract = {Let n ≥ 2 and $H_k^\{s,s^\{\prime \}\} = \{u∈ S^\{\prime \}(ℝ^n): ∥u∥_\{s,s^\{\prime \}\} < ∞\}$, where
$∥u∥²_\{s,s^\{\prime \}\} = (2π)^\{-n\} ∫(1+|ξ|²)^s (1+|ξ^\{\prime \}|²)^\{s^\{\prime \}\}|Fu(ξ)|²dξ $,
$Fu(ξ) = ∫e^\{-ixξ\} u(x) dx$, $ξ^\{\prime \}∈ ℝ^k$, k < n. We prove that for some s,s’ the space $H^\{s,s^\{\prime \}\}_k$ is a multiplicative algebra.},
	author = {Henryk Kołakowski},
	journal = {Annales Polonici Mathematici},
	keywords = {multiplicative algebra; Littlewood double decomposition; Fourier transform; microlocal regularity; nonlinear boundary value problems},
	language = {eng},
	number = {2},
	pages = {199-209},
	title = {Properties of the Sobolev space $H_k^\{s,s^\{\prime \}\}$},
	url = {http://eudml.org/doc/262677},
	volume = {71},
	year = {1999},
}
TY  - JOUR
AU  - Henryk Kołakowski
TI  - Properties of the Sobolev space $H_k^{s,s^{\prime }}$
JO  - Annales Polonici Mathematici
PY  - 1999
VL  - 71
IS  - 2
SP  - 199
EP  - 209
AB  - Let n ≥ 2 and $H_k^{s,s^{\prime }} = {u∈ S^{\prime }(ℝ^n): ∥u∥_{s,s^{\prime }} < ∞}$, where
$∥u∥²_{s,s^{\prime }} = (2π)^{-n} ∫(1+|ξ|²)^s (1+|ξ^{\prime }|²)^{s^{\prime }}|Fu(ξ)|²dξ $,
$Fu(ξ) = ∫e^{-ixξ} u(x) dx$, $ξ^{\prime }∈ ℝ^k$, k < n. We prove that for some s,s’ the space $H^{s,s^{\prime }}_k$ is a multiplicative algebra.
LA  - eng
KW  - multiplicative algebra; Littlewood double decomposition; Fourier transform; microlocal regularity; nonlinear boundary value problems
UR  - http://eudml.org/doc/262677
ER  - 
References
top- [1] M. Sable-Tougeron, Régularité microlocale pour des problèmes aux limites non linéaires, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 1, 39-82. Zbl0577.35004
- [2] B. Yu. Sternin, Elliptic and parabolic boundary value problems on manifolds with boundary components of different dimensions, Trudy Moskov. Mat. Obshch. 15 (1966), 346-382 (in Russian). Zbl0161.08504
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 