Singularities and normal forms of smooth distributions
Banach Center Publications (1995)
- Volume: 32, Issue: 1, page 395-409
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topZhitomirskiĭ, M.. "Singularities and normal forms of smooth distributions." Banach Center Publications 32.1 (1995): 395-409. <http://eudml.org/doc/262684>.
@article{Zhitomirskiĭ1995,
abstract = {In this expository paper we present main results (from classical to recent) on local classification of smooth distributions.},
author = {Zhitomirskiĭ, M.},
journal = {Banach Center Publications},
keywords = {smooth distributions; normal forms; singularities},
language = {eng},
number = {1},
pages = {395-409},
title = {Singularities and normal forms of smooth distributions},
url = {http://eudml.org/doc/262684},
volume = {32},
year = {1995},
}
TY - JOUR
AU - Zhitomirskiĭ, M.
TI - Singularities and normal forms of smooth distributions
JO - Banach Center Publications
PY - 1995
VL - 32
IS - 1
SP - 395
EP - 409
AB - In this expository paper we present main results (from classical to recent) on local classification of smooth distributions.
LA - eng
KW - smooth distributions; normal forms; singularities
UR - http://eudml.org/doc/262684
ER -
References
top- R. L. Bryant, (1994), Smooth normal form for generic germs of 2-distributions on 5-manifolds, a letter to the author.
- R. L. Bryant and L. Hsu, (1993), Rigidity of integral curves of rank 2 distributions, Invent. Math. 114, 435-461. Zbl0807.58007
- F. Engel, (1889), Zur Invariantentheorie der Systeme von Pfaffschen Gleichungen, Berichte Verhandl. Königl. Sachsischen Gesell. Wiss. Math.-Phys. Kl. 41. Zbl21.0340.01
- E. Goursat, (1923), Leçons sur le Problème de Pfaff, Hermann, Paris. Zbl48.0538.01
- B. Jakubczyk and F. Przytycki, (1979), On J. Martinet's conjecture, Bull. Polish Acad. Sci. Math. 27. Zbl0451.58004
- B. Jakubczyk and F. Przytycki, (1984), Singularities of k-tuples of vector fields, Dissertationes Math. (Rozprawy Mat.) 213. Zbl0565.58007
- A. Kumpera and C. Ruiz, (1982), Sur l'équivalence locale des systèmes de Pfaff en drapeau, in: Monge-Ampère Equations and Related Topics, Inst. Alta Mat., Rome, 201-248. Zbl0516.58004
- W. Liu and H. J. Sussmann, (1994), Shortest paths for sub-Riemannian metrics of rank-2 distributions, preprint, Rutgers University.
- J. Martinet, (1970), Sur les singularités des formes différentielles, Ann. Inst. Fourier (Grenoble) 20 (1), 95-178. Zbl0189.10001
- R. Montgomery, (1995), Abnormal minimizers, SIAM J. Control Optim., to appear. Zbl0816.49019
- P. Mormul, (1988), Singularities of triples of vector fields on : the focusing stratum, Studia Math. 91, 241-273. Zbl0681.58039
- A. M. Vershik and V. Ya. Gershkovich, (1988), An estimate of the functional dimension for the space of orbits of germs of generic distributions, Math. Notes 44 (5), 806-810. Zbl0694.58005
- A. M. Vershik and V. Ya. Gershkovich, (1989), A bundle of nilpotent Lie algebras over a nonholomorphic manifold (nilpotentization), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 172 (10), 21-40 (in Russian). Zbl0780.58004
- M. Zhitomirskiĭ, (1988), Singularities and normal forms of even-dimensional Pfaff equations, Russian Math. Surveys 43 (5), 266-267.
- M. Zhitomirskiĭ, (1989), Singularities and normal forms of odd-dimensional Pfaff equations, Functional Anal. Appl. 23 (1), 59-61.
- M. Zhitomirskiĭ, (1990), Normal forms of germs of distributions with a fixed growth vector, Algebra i Anal. 2 (5), 125-149 (in Russian).
- M. Zhitomirskiĭ, (1990a), Normal forms of germs of 2-dimensional distributions on , Functional Anal. Appl. 24 (2), 150-152.
- M. Zhitomirskiĭ, (1991), Normal forms of germs of smooth distributions, Math. Notes 49 (2), 139-144. Zbl0729.58006
- M. Zhitomirskiĭ, (1992), Typical Singularities of Differential 1-Forms and Pfaffian Equations, Transl. Math. Monographs 113, Amer. Math. Soc., Providence, 1992.
Citations in EuDML Documents
top- Mohamad Cheaito, Piotr Mormul, Rank-2 distributions satisfying the Goursat condition : all their local models in dimension 7 and 8
- Mohamad Cheaito, Piotr Mormul, Rank-2 distributions satisfying the Goursat condition: all their local models in dimension 7 and 8
- William Pasillas-Lépine, Witold Respondek, On the Geometry of Goursat Structures
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.