Some quadratic integral inequalities of Opial type
Annales Polonici Mathematici (1996)
- Volume: 63, Issue: 2, page 103-113
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] P. R. Beesack, On an integral inequality of Z. Opial, Trans. Amer. Math. Soc. 104 (1962), 470-475. Zbl0122.30102
- [2] D. W. Boyd, Best constants in inequalities related to Opial's inequality, J. Math. Anal. Appl. 25 (1969), 378-387. Zbl0176.12702
- [3] B. Florkiewicz, Some integral inequalities of Hardy type, Colloq. Math. 43 (1980), 321-330. Zbl0473.26007
- [4] B. Florkiewicz, On some integral inequalities of Opial type, to appear.
- [5] B. Florkiewicz and A. Rybarski, Some integral inequalities of Sturm-Liouville type, Colloq. Math. 36 (1976), 127-141. Zbl0354.26007
- [6] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer, Dordrecht, 1991, 114-142. Zbl0744.26011
- [7] C. Olech, A simple proof of a certain result of Z. Opial, Ann. Polon. Math. 8 (1960), 61-63. Zbl0089.27404
- [8] Z. Opial, Sur une inégalité, Ann. Polon. Math. 8 (1960), 29-32. Zbl0089.27403
- [9] R. Redheffer, Inequalities with three functions, J. Math. Anal. Appl. 16 (1966), 219-242. Zbl0144.30702
- [10] R. Redheffer, Integral inequalities with boundary terms, in: Inequalities II, Proc. II Symposium on Inequalities, Colorado (USA), August 14-22, 1967, O. Shisha (ed.), New York and London 1970, 261-291.
- [11] G. S. Yang, On a certain result of Z. Opial, Proc. Japan Acad. 42 (1966), 78-83. Zbl0151.05202