On a theorem of Cauchy-Kovalevskaya type for a class of nonlinear PDE's of higher order with deviating arguments

Antoni Augustynowicz

Annales Polonici Mathematici (1999)

  • Volume: 72, Issue: 2, page 181-190
  • ISSN: 0066-2216

Abstract

top
We prove an existence theorem of Cauchy-Kovalevskaya type for the equation D t u ( t , z ) = f ( t , z , u ( α ( 0 ) ( t , z ) ) , D z u ( α ( 1 ) ( t , z ) ) , . . . , D z k u ( α ( k ) ( t , z ) ) ) where f is a polynomial with respect to the last k variables.

How to cite

top

Augustynowicz, Antoni. "On a theorem of Cauchy-Kovalevskaya type for a class of nonlinear PDE's of higher order with deviating arguments." Annales Polonici Mathematici 72.2 (1999): 181-190. <http://eudml.org/doc/262738>.

@article{Augustynowicz1999,
abstract = {We prove an existence theorem of Cauchy-Kovalevskaya type for the equation $D_t u(t,z) = f(t,z,u(α^\{(0)\}(t,z)), D_z u(α^\{(1)\}(t,z)),...,D_z^k u(α^\{(k)\}(t,z)))$ where f is a polynomial with respect to the last k variables.},
author = {Augustynowicz, Antoni},
journal = {Annales Polonici Mathematici},
keywords = {nonlinear equation; deviating argument; analytic solution; Cauchy-Kovalevskaya theorem; polynomial nonlinearity},
language = {eng},
number = {2},
pages = {181-190},
title = {On a theorem of Cauchy-Kovalevskaya type for a class of nonlinear PDE's of higher order with deviating arguments},
url = {http://eudml.org/doc/262738},
volume = {72},
year = {1999},
}

TY - JOUR
AU - Augustynowicz, Antoni
TI - On a theorem of Cauchy-Kovalevskaya type for a class of nonlinear PDE's of higher order with deviating arguments
JO - Annales Polonici Mathematici
PY - 1999
VL - 72
IS - 2
SP - 181
EP - 190
AB - We prove an existence theorem of Cauchy-Kovalevskaya type for the equation $D_t u(t,z) = f(t,z,u(α^{(0)}(t,z)), D_z u(α^{(1)}(t,z)),...,D_z^k u(α^{(k)}(t,z)))$ where f is a polynomial with respect to the last k variables.
LA - eng
KW - nonlinear equation; deviating argument; analytic solution; Cauchy-Kovalevskaya theorem; polynomial nonlinearity
UR - http://eudml.org/doc/262738
ER -

References

top
  1. [1] A. Augustynowicz, Existence and uniqueness of solutions for partial differential-functional equations of the first order with deviating arguments of the derivative of unknown function, Serdica Math. J. 23 (1997), 203-210. Zbl0978.35086
  2. [2] A. Augustynowicz, Analytic solutions to the first order partial differential equations with time delays at the derivatives, Funct. Differ. Equations 6 (1999), 19-29. Zbl1027.35144
  3. [3] A. Augustynowicz and H. Leszczyński, On the existence of analytic solutions of the Cauchy problem for first-order partial differential equations with retarded variables, Comment. Math. Prace Mat. 36 (1996), 11-25. Zbl0877.35130
  4. [4] A. Augustynowicz and H. Leszczyński, On x-analytic solutions to the Cauchy problem for partial differential equations with retarded variables, Z. Anal. Anwendungen 15 (1996), 345-356. Zbl0847.35029
  5. [5] A. Augustynowicz and H. Leszczyński, Periodic solutions to the Cauchy problem for PDEs with retarded variables, submitted. 
  6. [6] A. Augustynowicz, H. Leszczyński and W. Walter, Cauchy-Kovalevskaya theory for equations with deviating variables, Aequationes Math. 58 (1999), 143-156. Zbl0929.35004
  7. [7] A. Augustynowicz, H. Leszczyński and W. Walter, Cauchy-Kovalevskaya theory for nonlinear equations with deviating variables, Nonlinear Anal., to appear. Zbl0989.35132
  8. [8] S. von Kowalevsky, Zur Theorie der partiellen Differentialgleichungen, J. Reine Angew. Math. 80 (1875), 1-32. 
  9. [9] H. Leszczyński, Fundamental solutions to linear first-order equations with a delay at derivatives, Boll. Un. Mat. Ital. A (7) 10 (1996), 363-375. Zbl0865.35137
  10. [10] M. Nagumo, Über das Anfangswertproblem partieller Differentialgleichungen, Japan. J. Math. 18 (1942), 41-47. Zbl0061.21107
  11. [11] R. M. Redheffer and W. Walter, Existence theorems for strongly coupled systems of partial differential equations over Bernstein classes, Bull. Amer. Math. Soc. 82 (1976), 899-902. Zbl0349.35015
  12. [12] W. Walter, An elementary proof of the Cauchy-Kovalevsky Theorem, Amer. Math. Monthly 92 (1985), 115-126. Zbl0576.35002
  13. [13] W. Walter, Functional differential equations of the Cauchy-Kovalevsky type, Aequationes Math. 28 (1985), 102-113. Zbl0576.35003
  14. [14] T. Yamanaka, A Cauchy-Kovalevskaja type theorem in the Gevrey class with a vector-valued time variable, Comm. Partial Differential Equations 17 (1992), 1457-1502. Zbl0816.35013
  15. [15] T. Yamanaka and H. Tamaki, Cauchy-Kovalevskaya theorem for functional partial differential equations, Comment. Math. Univ. St. Paul. 29 (1980), 55-64. Zbl0437.35003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.