Finitary axiomatizations of the true relational equations

Roger Maddux

Banach Center Publications (1993)

  • Volume: 28, Issue: 1, page 201-208
  • ISSN: 0137-6934

How to cite

top

Maddux, Roger. "Finitary axiomatizations of the true relational equations." Banach Center Publications 28.1 (1993): 201-208. <http://eudml.org/doc/262746>.

@article{Maddux1993,
author = {Maddux, Roger},
journal = {Banach Center Publications},
keywords = {representable relation algebra; axiomatization; semiassociative law},
language = {eng},
number = {1},
pages = {201-208},
title = {Finitary axiomatizations of the true relational equations},
url = {http://eudml.org/doc/262746},
volume = {28},
year = {1993},
}

TY - JOUR
AU - Maddux, Roger
TI - Finitary axiomatizations of the true relational equations
JO - Banach Center Publications
PY - 1993
VL - 28
IS - 1
SP - 201
EP - 208
LA - eng
KW - representable relation algebra; axiomatization; semiassociative law
UR - http://eudml.org/doc/262746
ER -

References

top
  1. [1] L. H. Chin and A. Tarski, Distributive and modular laws in the arithmetic of relation algebras, Univ. California Publ. Math. (N.S.) 1 (1951), 341-384. 
  2. [2] S. Givant, Tarski's development of logic and mathematics based on the calculus of relations, in: Algebraic Logic, Colloq. Math. Soc. János Bolyai 54, North-Holland, Amsterdam 1991, 361-392. Zbl0784.03004
  3. [3] L. Henkin, J. D. Monk and A. Tarski, Cylindric Algebras, Part II, North-Holland, Amsterdam 1985. 
  4. [4] B. Jónsson, Varieties of relation algebras, Algebra Universalis 15 (1982), 273-298. Zbl0545.08009
  5. [5] B. Jónsson, The theory of binary relations, in: Algebraic Logic, Colloq. Math. Soc. János Bolyai 54, North-Holland, Amsterdam 1991, 245-292. Zbl0760.03018
  6. [6] B. Jónsson and A. Tarski, Boolean algebras with operators, Part II, Amer. J. Math. 74 (1952), 127-162. Zbl0045.31601
  7. [7] R. C. Lyndon, The representation of relational algebras, II, Ann. of Math. (2) 63 (1956), 294-307. Zbl0070.24601
  8. [8] R. D. Maddux, Some sufficient conditions for the representability of relation algebras, Algebra Universalis 8 (1978), 162-172. Zbl0386.03033
  9. [9] R. D. Maddux, Topics in relation algebras, dissertation, Univ. of California, Berkeley 1978. 
  10. [10] R. D. Maddux, Some varieties containing relation algebras, Trans. Amer. Math. Soc. 272 (1982), 501-526. Zbl0515.03039
  11. [11] R. D. Maddux, Necessary subalgebras of simple nonintegral semiassociative relation algebras, Algebra Universalis 27 (1990), 544-558. Zbl0723.03038
  12. [12] R. D. Maddux, Pair-dense relation algebras, Trans. Amer. Math. Soc. 328 (1991), 83-131. Zbl0746.03055
  13. [13] R. D. Maddux, Introductory course on relation algebras, finite-dimensional cylindric algebras, and their interconnections, in: Algebraic Logic, Colloq. Math. Soc. János Bolyai 54, North-Holland, Amsterdam 1991, 361-392. Zbl0749.03048
  14. [14] R. D. Maddux, The origin of relation algebras in the development and axiomatization of the calculus of relations, Studia Logica 50 (1991), 421-455. Zbl0754.03042
  15. [15] R. D. Maddux and A. Tarski, A sufficient condition for the representability of relation algebras, Notices Amer. Math. Soc. 23 (1976), A-477. 
  16. [16] R. N. W. McKenzie, A general method for constructing elementary axioms for classes of representable structures, preprint, 1966. 
  17. [17] J. D. Monk, On representable relation algebras, Michigan Math. J. 11 (1964), 207-210. Zbl0137.00603
  18. [18] J. D. Monk, Nonfinitizability of classes of representable cylindric algebras, J. Symbolic Logic 34 (1969), 331-343. Zbl0181.30002
  19. [19] A. Tarski and S. Givant, A Formalization of Set Theory without Variables, Amer. Math. Soc., 1987. Zbl0654.03036
  20. [20] Y. Venema, Two-dimensional modal logics for relational algebras and temporal logic of intervals, LP-89-03, Institute for Language, Logic, and Information, Univ. of Amsterdam, 1989. 
  21. [21] Y. Venema, Many-dimensional modal logic, dissertation, Univ. of Amsterdam, 1992. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.