Additive combinations of special operators
Banach Center Publications (1994)
- Volume: 30, Issue: 1, page 337-361
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. Anderson, Commutators of compact operators, J. Reine Angew. Math. 291 (1977), 128-132. Zbl0341.47025
- [2] I. D. Berg, An extension of the Weyl-von Neumann theory to normal operators, Trans. Amer. Math. Soc. 160 (1971), 365-371. Zbl0212.15903
- [3] I. D. Berg and B. Sims, Denseness of operators which attain their numerical radius, J. Austral. Math. Soc. 36A (1984), 130-133. Zbl0561.47004
- [4] R. Bouldin, The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), 513-517. Zbl0483.47015
- [5] A. Brown and C. Pearcy, Structure of commutators of operators, Ann. of Math. 82 (1965), 112-127. Zbl0131.12302
- [6] M.-D. Choi and P. Y. Wu, Convex combinations of projections, Linear Algebra Appl. 136 (1990), 25-42. Zbl0721.15007
- [7] M.-D. Choi and P. Y. Wu, Sums of projections, to appear.
- [8] Ch. Davis, Separation of two linear subspaces, Acta Sci. Math. (Szeged) 19 (1958), 172-187. Zbl0090.32603
- [9] P. Fan and C. K. Fong, Which operators are the self-commutators of compact operators?, Proc. Amer. Math. Soc. 80 (1980), 58-60. Zbl0442.47024
- [10] P. Fan and C. K. Fong, Operators similar to zero diagonal operators, Proc. Roy. Irish Acad. 87A (1988), 147-153. Zbl0651.47013
- [11] P. A. Fillmore, Sums of operators with square zero, Acta Sci. Math. (Szeged) 28 (1967), 285-288. Zbl0159.19302
- [12] P. A. Fillmore, On similarity and the diagonal of a matrix, Amer. Math. Monthly 76 (1969), 167-169. Zbl0175.02403
- [13] P. A. Fillmore, On sums of projections, J. Funct. Anal. 4 (1969), 146-152. Zbl0176.43404
- [14] P. A. Fillmore and D. M. Topping, Sums of irreducible operators, Proc. Amer. Math. Soc. 20 (1969), 131-133. Zbl0165.47702
- [15] C. K. Fong, C. R. Miers and A. R. Sourour, Lie and Jordan ideals of operators on Hilbert space, ibid. 84 (1982), 516-520. Zbl0509.47035
- [16] C. K. Fong and G. J. Murphy, Averages of projections, J. Operator Theory 13 (1985), 219-225. Zbl0614.47011
- [17] C. K. Fong and G. J. Murphy, Ideals and Lie ideals of operators, Acta Sci. Math. (Szeged) 51 (1987), 441-456. Zbl0659.47040
- [18] C. K. Fong and A. R. Sourour, Sums and products of quasi-nilpotent operators, Proc. Royal Soc. Edinburgh 99A (1984), 193-200. Zbl0598.47016
- [19] C. K. Fong and P. Y. Wu, Diagonal operators: dilation, sum and product, Acta Sci. Math. (Szeged) 57 (1993), 125-138. Zbl0819.47047
- [20] U. Haagerup, On convex combinations of unitary operators in C*-algebras, in: Mappings of Operator Algebras, H. Araki and R. V. Kadison (eds.), Birkhäuser, Boston, 1991, 1-13. Zbl0772.47020
- [21] P. R. Halmos, Commutators of operators, Amer. J. Math. 74 (1952), 237-240. Zbl0046.12302
- [22] P. R. Halmos, Commutators of operators, II, ibid. 76 (1954), 191-198. Zbl0055.10705
- [23] P. R. Halmos, Two subspaces, Trans. Amer. Math. Soc. 144 (1969), 381-389. Zbl0187.05503
- [24] P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Springer, New York, 1982.
- [25] R. E. Hartwig and M. S. Putcha, When is a matrix a difference of two idempotents?, Linear Multilinear Algebra 26 (1990), 267-277. Zbl0696.15010
- [26] R. E. Hartwig and M. S. Putcha, When is a matrix a sum of idempotents?, ibid. 26 (1990), 279-286. Zbl0696.15011
- [27] R. B. Holmes, Best approximation by normal operators, J. Approx. Theory 12 (1974), 412-417. Zbl0291.41025
- [28] S. Izumino, Inequalities on operators with index zero, Math. Japon. 5 (1979), 565-572. Zbl0411.47006
- [29] R. V. Kadison and G. K. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249-266. Zbl0573.46034
- [30] N. J. Kalton, Trace-class operators and commutators, J. Funct. Anal. 86 (1989), 41-74. Zbl0684.47017
- [31] J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963), 139-148. Zbl0127.06704
- [32] K. Matsumoto, Self-adjoint operators as a real span of 5 projections, Math. Japon. 29 (1984), 291-294. Zbl0549.47007
- [33] Y. Nakamura, Every Hermitian matrix is a linear combination of four projections, Linear Algebra Appl. 61 (1984), 133-139. Zbl0547.15012
- [34] K. Nishio, The structure of a real linear combination of two projections, ibid. 66 (1985), 169-176. Zbl0584.47014
- [35] C. L. Olsen, Unitary approximation, J. Funct. Anal. 85 (1989), 392-419. Zbl0684.46049
- [36] C. L. Olsen and G. K. Pedersen, Convex combinations of unitary operators in von Neumann algebras, ibid. 66 (1986), 365-380. Zbl0597.46061
- [37] A. Paszkiewicz, Any self-adjoint operator is a finite linear combination of projections, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 227-245. Zbl0495.47003
- [38] C. Pearcy and D. M. Topping, Sums of small numbers of idempotents, Michigan Math. J. 14 (1967), 453-465. Zbl0156.38102
- [39] H. Radjavi, Structure of A*A-AA*, J. Math. Mech. 16 (1966), 19-26.
- [40] H. Radjavi, Every operator is the sum of two irreducible ones, Proc. Amer. Math. Soc. 21 (1969), 251-252. Zbl0182.45903
- [41] F. Riesz and B. Sz.-Nagy, Functional Analysis, Frederick Ungar, New York, 1955. Zbl0070.10902
- [42] M. Rοrdam, Advances in the theory of unitary rank and regular approximation, Ann. of Math. 128 (1988), 153-172. Zbl0659.46052
- [43] J. G. Stampfli, Sums of projections, Duke Math. J. 31 (1964), 455-461. Zbl0127.06702
- [44] B.-S. Tam, A simple proof of the Goldberg-Straus theorem on numerical radii, Glasgow Math. J. 28 (1986), 139-141. Zbl0605.15019
- [45] D. M. Topping, On linear combinations of special operators, J. Algebra 10 (1968), 516-521. Zbl0185.38801
- [46] J.-H. Wang, Decomposition of operators into quadratic types, Ph.D. dissertation, National Chiao Tung Univ., Hsinchu, Taiwan, 1991.
- [47] J.-H. Wang, The length problem for idempotent sum, Linear Algebra Appl., to appear.
- [48] J.-H. Wang, Linear combination of idempotents, to appear.
- [49] J.-H. Wang and P. Y. Wu, Sums of square-zero operators, Studia Math. 99 (1991), 115-127. Zbl0745.47006
- [50] J.-H. Wang and P. Y. Wu, Difference and similarity models of two idempotent operators, Linear Algebra Appl., to appear. Zbl0803.47021
- [51] P. Y. Wu, Sums of idempotent matrices, ibid. 142 (1990), 43-54.
- [52] P. Y. Wu, Sums and products of cyclic operators, Proc. Amer. Math. Soc., to appear. Zbl0816.47015