Invariants intégraux fonctionnels pour des équations aux dérivées partielles d'origine géométrique

Jean Bourguignon

Banach Center Publications (1992)

  • Volume: 27, Issue: 1, page 65-73
  • ISSN: 0137-6934

How to cite

top

Bourguignon, Jean. "Invariants intégraux fonctionnels pour des équations aux dérivées partielles d'origine géométrique." Banach Center Publications 27.1 (1992): 65-73. <http://eudml.org/doc/262763>.

@article{Bourguignon1992,
author = {Bourguignon, Jean},
journal = {Banach Center Publications},
keywords = {conformal class; volume element; partial differential equations of Nirenberg and Yamabe type; Kähler-Einstein metrics; Chern classes; integral invariants; Futaki obstruction},
language = {fre},
number = {1},
pages = {65-73},
title = {Invariants intégraux fonctionnels pour des équations aux dérivées partielles d'origine géométrique},
url = {http://eudml.org/doc/262763},
volume = {27},
year = {1992},
}

TY - JOUR
AU - Bourguignon, Jean
TI - Invariants intégraux fonctionnels pour des équations aux dérivées partielles d'origine géométrique
JO - Banach Center Publications
PY - 1992
VL - 27
IS - 1
SP - 65
EP - 73
LA - fre
KW - conformal class; volume element; partial differential equations of Nirenberg and Yamabe type; Kähler-Einstein metrics; Chern classes; integral invariants; Futaki obstruction
UR - http://eudml.org/doc/262763
ER -

References

top
  1. [1] A. Bahri et J. M. Coron, Une théorie des points critiques à l'infini pour l'équation de Yamabe et le problème de Kazdan-Warner, C. R. Acad. Sci. Paris 300 (1985), 513-516. Zbl0585.58005
  2. [2] J. P. Bourguignon and J. P. Ezin, Scalar curvature functions in a conformal class of metrics and conformal transformations, preprint, Ecole Polytechnique. Zbl0622.53023
  3. [3] J. F. Escobar and R. Schœn, Conformal metrics with prescribed scalar curvature, preprint, Univ. of California, San Diego, 1985. 
  4. [4] A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983), 437-443. Zbl0506.53030
  5. [5] J. L. Kazdan and F. Warner, Curvature functions on compact 2-manifolds, Ann. of Math. 99 (1974), 14-47. Zbl0273.53034
  6. [6] J. Lelong-Ferrand, Transformations conformes et quasi-conformes des variétés riemanniennes compactes (démonstration de la conjecture de Lichnerowicz), Acad. Roy. Belg. Cl. Sci. Mémoire 39 (5) (1971). Zbl0215.50902
  7. [7] M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geom. 6 (1971), 247-258. Zbl0236.53042

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.