Nonlocal problems for first order functional partial differential equations

Jan Turo

Annales Polonici Mathematici (1999)

  • Volume: 72, Issue: 2, page 99-114
  • ISSN: 0066-2216

Abstract

top
Local existence of generalized solutions to nonlocal problems for nonlinear functional partial differential equations of first order is investigated. The proof is based on the bicharacteristics and successive approximations methods.

How to cite

top

Turo, Jan. "Nonlocal problems for first order functional partial differential equations." Annales Polonici Mathematici 72.2 (1999): 99-114. <http://eudml.org/doc/262771>.

@article{Turo1999,
abstract = {Local existence of generalized solutions to nonlocal problems for nonlinear functional partial differential equations of first order is investigated. The proof is based on the bicharacteristics and successive approximations methods.},
author = {Turo, Jan},
journal = {Annales Polonici Mathematici},
keywords = {nonlocal problem; generalized solution; differential-functional equation; local existence of generalized solutions; bicharacteristics; approximation methods},
language = {eng},
number = {2},
pages = {99-114},
title = {Nonlocal problems for first order functional partial differential equations},
url = {http://eudml.org/doc/262771},
volume = {72},
year = {1999},
}

TY - JOUR
AU - Turo, Jan
TI - Nonlocal problems for first order functional partial differential equations
JO - Annales Polonici Mathematici
PY - 1999
VL - 72
IS - 2
SP - 99
EP - 114
AB - Local existence of generalized solutions to nonlocal problems for nonlinear functional partial differential equations of first order is investigated. The proof is based on the bicharacteristics and successive approximations methods.
LA - eng
KW - nonlocal problem; generalized solution; differential-functional equation; local existence of generalized solutions; bicharacteristics; approximation methods
UR - http://eudml.org/doc/262771
ER -

References

top
  1. [1] P. Bassanini, Su una recente dimostrazione cirza il problema di Cauchy per sistemi quasi lineari iperbolici, Boll. Un. Mat. Ital. B (5) 13 (1976), 322-335. Zbl0342.35035
  2. [2] P. Bassanini, On a recent proof concerning a boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form, ibid. A (5) 14 (1977), 325-332. Zbl0355.35059
  3. [3] P. Bassanini, Iterative methods for quasilinear hyperbolic systems, ibid. B (6) 1 (1982), 225-250. Zbl0488.35056
  4. [4] P. Bassanini e M. C. Salvatori, Un problema ai limiti per sistemi integrodifferenziali non lineari di tipo iperbolico, ibid. B (5) 18 (1981), 785-798. Zbl0492.45010
  5. [5] P. Brandi, Z. Kamont and A. Salvadori, Existence of weak solutions for partial differential-functional equations, preprint. Zbl0737.35134
  6. [6] L. Byszewski, Existence and uniqueness of solutions of nonlocal problems for hyperbolic equation u x t = F ( x , t , u , u x ) , J. Appl. Math. Stochastic Anal. 3 (1990), 163-168. Zbl0725.35059
  7. [7] L. Byszewski, Theorem about existence and uniqueness of continuous solution of nonlocal problem for nonlinear hyperbolic equation, Appl. Anal. 40 (1991), 173-180. Zbl0725.35060
  8. [8] L. Byszewski, Existence of a solution of a Fourier nonlocal quasilinear parabolic problem, J. Appl. Math. Stochastic Anal. 5 (1992), 43-68. Zbl0769.35024
  9. [9] L. Byszewski, Monotone iterative method for a system of nonlocal initial-boundary parabolic problems, J. Math. Anal. Appl. 177 (1993), 445-458. Zbl0791.35058
  10. [10] L. Byszewski and V. Lakshmikantham, Monotone iterative technique for nonlocal hyperbolic differential problem, J. Math. Phys. Sci. 26 (1992), 346-359. Zbl0811.35083
  11. [11] L. Cesari, A boundary value problem for quasilinear hyperbolic system, Riv. Mat. Univ. Parma 3 (1974), 107-131. Zbl0342.35036
  12. [12] L. Cesari, A boundary value problem for quasilinear hyperbolic system in the Schauder canonic form, Ann. Scuola Norm. Sup. Pisa (4) 1 (1974), 311-358. Zbl0307.35063
  13. [13] J. Chabrowski, On non-local problems for parabolic equations, Nagoya Math. J. 93 (1984), 109-131. Zbl0506.35048
  14. [14] M. Cinquini-Cibrario e S. Cinquini, Equazioni alle derivate parziali di tipo iperbolico, Cremonese, Roma, 1964. Zbl0145.35404
  15. [15] T. Człapiński, On existence and uniqueness of solutions of nonlocal problems for hyperbolic differential-functional equations, preprint. Zbl0899.35120
  16. [16] T. Człapiński, On the Cauchy problem for quasilinear hyperbolic systems of partial differential-functional equations of the first order, Z. Anal. Anwendungen 10 (1991), 169-182. Zbl0763.35055
  17. [17] T. Człapiński and Z. Kamont, Generalized solutions of quasi-linear hyperbolic systems of partial differential-functional equations, J. Math. Anal. Appl. 172 (1993), 353-370. Zbl0798.35149
  18. [18] Z. Kamont, Hyperbolic Functional Differential Inequalities and Applications, Kl-wer, 1999, to appear. 
  19. [19] Z. Kamont and J. Turo, On the Cauchy problem for quasilinear hyperbolic system of partial differential equations with a retarded argument, Boll. Un. Mat. Ital. B (6) 4 (1985), 901-916. Zbl0614.35089
  20. [20] Z. Kamont and J. Turo, A boundary value problem for quasilinear hyperbolic systems with a retarded argument, Ann. Polon. Math. 47 (1987), 347-360. Zbl0658.35085
  21. [21] A. Pliś, Generalization of the Cauchy problem for a system of partial differential equations, Bull. Acad. Polon. Sci. Cl. III 4 (1956), 741-744. Zbl0072.10002
  22. [22] P. Pucci, Problemi ai limiti per sistemi di equazioni iperboliche, Boll. Un. Mat. Ital. B (5) 16 (1979), 87-99. Zbl0399.35076
  23. [23] J. Szarski, Generalized Cauchy problem for differential-functional equations with first order partial derivatives, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 575-580. Zbl0352.35030
  24. [24] J. Turo, On some class of quasilinear hyperbolic systems of partial differential-functional equations of the first order, Czechoslovak Math. J. 36 (1986), 185-197. Zbl0612.35082
  25. [25] J. Turo, Generalized solutions of the Cauchy problem for nonlinear functional partial differential equations, Z. Anal. Anwendungen 7 (1988), 127-133. Zbl0665.35014
  26. [26] J. Turo, Generalized solutions to functional partial differential equations of the first order, Zeszyty Nauk. Politech. Gdańskiej Mat. 14 (1988), 1-99. 
  27. [27] J. Turo, A boundary value problem for hyperbolic systems of differential-functional equations, Nonlinear Anal. 13 (1989), 7-18. Zbl0678.35090
  28. [28] J. Turo, Classical solutions to nonlinear hyperbolic functional partial differential equations, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. (N.S.), to appear. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.