A radial Phragmén-Lindelöf estimate for plurisubharmonic functions on algebraic varieties
Rüdiger Braun; Reinhold Meise; B. Taylor
Annales Polonici Mathematici (1999)
- Volume: 72, Issue: 2, page 159-179
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] K. G. Andersson, Propagation of analyticity of solutions of partial differential equations with constant coefficients, Ark. Mat. 8 (1971), 277-302. Zbl0211.40502
- [2] D. Bainbridge, Phragmén-Lindelöf estimates for plurisubharmonic functions of linear growth, thesis, Ann Arbor, 1998.
- [3] R. W. Braun, R. Meise and B. A. Taylor, An example concerning radial Phragmén-Lindelöf estimates for plurisubharmonic functions on algebraic varieties, Linear Topol. Spaces Complex Anal. 3 (1997), 24-29. Zbl0926.32038
- [4] R. W. Braun, R. Meise and B. A. Taylor, A perturbation result for linear differential operators admitting a global right inverse on D', Pacific J. Math., to appear. Zbl0963.35038
- [5] R. W. Braun, R. Meise and B. A. Taylor, Algebraic varieties on which the classical Phragmén-Lindelöf estimates hold for plurisubharmonic functions, Math. Z., to appear. Zbl0933.32047
- [6] E. M. Chirka, Complex Analytic Sets, Kluwer, Dordrecht, 1989.
- [7] L. Hörmander, On the existence of real analytic solutions of partial differential equations with constant coefficients, Invent. Math. 21 (1973), 151-183. Zbl0282.35015
- [8] R. Meise and B. A. Taylor, Phragmén-Lindelöf conditions for graph varieties, Results Math. 36 (1999), 121-148. Zbl0941.32032
- [9] R. Meise, B. A. Taylor and D. Vogt, Characterization of the linear partial operators with constant coefficients that admit a continuous linear right inverse, Ann. Inst. Fourier (Grenoble) 40 (1990), 619-655. Zbl0703.46025
- [10] R. Meise, B. A. Taylor and D. Vogt, Extremal plurisubharmonic functions of linear growth on algebraic varieties, Math. Z. 219 (1995), 515-537. Zbl0835.32008
- [11] R. Meise, B. A. Taylor and D. Vogt, Continuous linear right inverses for partial differential operators on non-quasianalytic classes and on ultradistributions, Math. Nachr. 180 (1996), 213-242. Zbl0858.46030
- [12] R. Meise, B. A. Taylor and D. Vogt, Phragmén-Lindelöf principles on algebraic varieties, J. Amer. Math. Soc. 11 (1998), 1-39. Zbl0896.32008
- [13] D. Mumford, Algebraic Geometry I, Complex Projective Varieties, Grundlehren Math. Wiss. 221, Springer, Berlin, 1976. Zbl0356.14002
- [14] N R. Nevanlinna, Eindeutige analytische Funktionen, Springer, 1974.
- [15] V. P. Palamodov, A criterion for splitness of differential complexes with constant coefficients, in: Geometrical and Algebraical Aspects in Several Complex Variables, C. A. Berenstein and D. C. Struppa (eds.), EditEL, 1991, 265-291. Zbl1112.58304
- [16] I. R. Shafarevich, Basic Algebraic Geometry 1, Springer, 1994. Zbl0797.14001
- [17] N. Sibony and P. Wong, Some results on global analytic sets, in: Séminaire Lelong-Skoda (Analyse), Lecture Notes in Math. 822, Springer, 1978-79, 221-237.
- [18] J. Siciak, Extremal plurisubharmonic functions in , Ann. Polon. Math. 39 (1981), 175-211. Zbl0477.32018
- [19] J. Siciak, Extremal Plurisubharmonic Functions and Capacities in , Sophia Kokyuroku in Mathematics 14, Tokyo, 1982. Zbl0579.32025
- [20] J. Stutz, Analytic sets as branched coverings, Trans. Amer. Math. Soc. 166 (1972), 241-259. Zbl0239.32006
- [21] H. Whitney, Complex Analytic Varieties, Addison-Wesley, 1972. Zbl0265.32008