Study of global solutions of parabolic equations via a priori estimates III. Equations of p-Laplacian type

Gary Lieberman

Banach Center Publications (1996)

  • Volume: 33, Issue: 1, page 199-221
  • ISSN: 0137-6934

How to cite

top

Lieberman, Gary. "Study of global solutions of parabolic equations via a priori estimates III. Equations of p-Laplacian type." Banach Center Publications 33.1 (1996): 199-221. <http://eudml.org/doc/262797>.

@article{Lieberman1996,
author = {Lieberman, Gary},
journal = {Banach Center Publications},
language = {eng},
number = {1},
pages = {199-221},
title = {Study of global solutions of parabolic equations via a priori estimates III. Equations of p-Laplacian type},
url = {http://eudml.org/doc/262797},
volume = {33},
year = {1996},
}

TY - JOUR
AU - Lieberman, Gary
TI - Study of global solutions of parabolic equations via a priori estimates III. Equations of p-Laplacian type
JO - Banach Center Publications
PY - 1996
VL - 33
IS - 1
SP - 199
EP - 221
LA - eng
UR - http://eudml.org/doc/262797
ER -

References

top
  1. [1] M. Chipot, M. Fila and P. Quittner, Stationary solutions, blow up and convergence to stationary solutions for semilinear parabolic equations with nonlinear boundary conditions, Acta Math. Univ. Comenian. 60 (1991), 35-103. Zbl0743.35038
  2. [2] T. K. Donaldson and N. S. Trudinger, Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal. 8 (1971), 52-75. Zbl0216.15702
  3. [3] M. Fila, Boundedness of global solutions for the heat equation with nonlinear boundary conditions, Comm. Math. Univ. Carolin. 30 (1989), 479-484. Zbl0702.35141
  4. [4] M. Fila, Boundedness of global solutions of nonlinear diffusion equations, J. Differential Equations 98 (1992), 226-240. Zbl0764.35010
  5. [5] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin 1983. Zbl0562.35001
  6. [6] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, London, 1985. Zbl0695.35060
  7. [7] M. A. Krasnosel'skii and Ya. B. Rutickii, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961. 
  8. [8] G. M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), 311-361. Zbl0742.35028
  9. [9] G. M. Lieberman, Study of global solutions of parabolic equations via a priori estimates I. Equations with principal elliptic part equal to the Laplacian, Math. Methods Appl. Sci. 16 (1993), 457-474. Zbl0797.35093
  10. [10] G. M. Lieberman, Study of global solutions of parabolic equations via a priori estimates II. Porous medium equations, Comm. Appl. Nonlinear Anal. 1 (1994), 93-115. Zbl0908.35067
  11. [11] G. M. Lieberman, Maximum estimates for solutions of degenerate parabolic equations in divergence form, J. Differential Equations 113 (1994), 543-571. Zbl0818.35052
  12. [12] H. Matano, Asymptotic behavior of solutions of semilinear heat equations on S 1 , in: Nonlinear Diffusion Equations and Their Equilibrium States, W.-M. Ni, L. A. Peletier and J. Serrin (eds.), Springer, 1988, 139-162. 
  13. [13] L. M. Simon, Interior gradient bounds for non-uniformly elliptic equations, Indiana Univ. Math. J. 25 (1976), 821-855. Zbl0346.35016
  14. [14] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-484. Zbl0163.36402
  15. [15] N. S. Trudinger, An imbedding theorem for H 0 ( G , Ω ) spaces, Studia Math. 50 (1974), 17-30. 
  16. [16] T. J. Zelenyak, Stabilization of solutions of boundary value problems for a second-order parabolic equation with one space variable, Differentsial'nye Uravneniya 4 (1968), 34-45; English transl.: Differential Equations 4 (1968), 17-22. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.