Weak solutions of equations of complex Monge-Ampère type

Sławomir Kołodziej

Annales Polonici Mathematici (2000)

  • Volume: 73, Issue: 1, page 59-67
  • ISSN: 0066-2216

Abstract

top
We prove some existence results for equations of complex Monge-Ampère type in strictly pseudoconvex domains and on Kähler manifolds.

How to cite

top

Kołodziej, Sławomir. "Weak solutions of equations of complex Monge-Ampère type." Annales Polonici Mathematici 73.1 (2000): 59-67. <http://eudml.org/doc/262805>.

@article{Kołodziej2000,
abstract = {We prove some existence results for equations of complex Monge-Ampère type in strictly pseudoconvex domains and on Kähler manifolds.},
author = {Kołodziej, Sławomir},
journal = {Annales Polonici Mathematici},
keywords = {plurisubharmonic function; complex Monge-Ampère operator; plurisubharmonic functions},
language = {eng},
number = {1},
pages = {59-67},
title = {Weak solutions of equations of complex Monge-Ampère type},
url = {http://eudml.org/doc/262805},
volume = {73},
year = {2000},
}

TY - JOUR
AU - Kołodziej, Sławomir
TI - Weak solutions of equations of complex Monge-Ampère type
JO - Annales Polonici Mathematici
PY - 2000
VL - 73
IS - 1
SP - 59
EP - 67
AB - We prove some existence results for equations of complex Monge-Ampère type in strictly pseudoconvex domains and on Kähler manifolds.
LA - eng
KW - plurisubharmonic function; complex Monge-Ampère operator; plurisubharmonic functions
UR - http://eudml.org/doc/262805
ER -

References

top
  1. [A1] T. Aubin, Equations du type Monge-Ampère sur les variétés kählériennes compactes, C. R. Acad. Sci. Paris 283 (1976), 119-121. Zbl0333.53040
  2. [A2] T. Aubin, Equations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. 102 (1978), 63-95. Zbl0374.53022
  3. [A3] T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Grundlehren Math. Wiss. 244, Springer, 1982. 
  4. [BT1] E. Bedford and B. A. Taylor, The Dirichlet problem for the complex Monge-Ampère operator, Invent. Math. 37 (1976), 1-44. Zbl0315.31007
  5. [BT2] E. Bedford and B. A. Taylor, The Dirichlet problem for an equation of complex Monge-Ampère type, in: Partial Differential Equations and Geometry, C. Byrnes (ed.), Dekker, 1979, 39-50. 
  6. [BT3] E. Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1-40. Zbl0547.32012
  7. [BT4] E. Bedford and B. A. Taylor, Uniqueness for the complex Monge-Ampère equation for functions of logarithmic growth, Indiana Univ. Math. J. 38 (1989), 455-469. Zbl0677.32002
  8. L. Caffarelli, J. J. Kohn, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations, Comm. Pure Appl. Math. 38 (1985), 209-252. Zbl0598.35048
  9. [Ce] U. Cegrell, On the Dirichlet problem for the complex Monge-Ampère operator, Math. Z. 185 (1984), 247-251. Zbl0539.35001
  10. [K1] S. Kołodziej, The range of the complex Monge-Ampère operator II, Indiana Univ. Math. J. 44 (1995), 765-782. Zbl0849.31009
  11. [K2] S. Kołodziej, Some sufficient conditions for solvability of the Dirichlet problem for the complex Monge-Ampère operator, Ann. Polon. Math. 65 (1996), 11-21. Zbl0878.32014
  12. [K3] S. Kołodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), 69-117. Zbl0913.35043
  13. [S] Y.-T. Siu, Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics, Birkhäuser, 1987. 
  14. [Y] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, Comm. Pure Appl. Math. 31 (1978), 339-411. Zbl0369.53059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.