Edge asymptotics on a skew cylinder: complex variable form

Martin Costabel; Monique Dauge

Banach Center Publications (1992)

  • Volume: 27, Issue: 1, page 81-90
  • ISSN: 0137-6934

How to cite

top

Costabel, Martin, and Dauge, Monique. "Edge asymptotics on a skew cylinder: complex variable form." Banach Center Publications 27.1 (1992): 81-90. <http://eudml.org/doc/262820>.

@article{Costabel1992,
author = {Costabel, Martin, Dauge, Monique},
journal = {Banach Center Publications},
language = {eng},
number = {1},
pages = {81-90},
title = {Edge asymptotics on a skew cylinder: complex variable form},
url = {http://eudml.org/doc/262820},
volume = {27},
year = {1992},
}

TY - JOUR
AU - Costabel, Martin
AU - Dauge, Monique
TI - Edge asymptotics on a skew cylinder: complex variable form
JO - Banach Center Publications
PY - 1992
VL - 27
IS - 1
SP - 81
EP - 90
LA - eng
UR - http://eudml.org/doc/262820
ER -

References

top
  1. [1] M. Costabel and M. Dauge, Edge asymptotics on a skew cylinder, in: International Workshop 'Analysis in Domains and on Manifolds with Singularities', Breitenbrunn 1990, Teubner, Leipzig 1991, to appear. 
  2. [2] M. Costabel and M. Dauge, General edge asymptotics of solutions of second order elliptic boundary value problems II, Publications de Laboratoire d'Analyse Numérique R91017, Université de Paris VI, 1991. 
  3. [3] M. Dauge, Elliptic Boundary Value Problems in Corner Domains-Smoothness and Asymptotics of Solutions, Lecture Notes in Math. 1341, Springer, Berlin 1988. 
  4. [4] P. Grisvard, Boundary Value Problems in Non-Smooth Domains, Pitman, London 1985. Zbl0695.35060
  5. [5] V. A. Kondrat'ev, Boundary-value problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc. 16 (1967), 227-313. 
  6. [6] V. A. Kondrat'ev, Singularities of a solution of Dirichlet's problem for a second order elliptic equation in a neighborhood of an edge, Differential Equations 13 (1970), 1411-1415. 
  7. [7] R. S. Lehman, Developments at an analytic corner of solutions of elliptic partial differential equations, J. Math. Mech. 8 (1959), 727-760. Zbl0094.29702
  8. [8] V. G. Maz’ya and B. A. Plamenevskiĭ, L p estimates of solutions of elliptic boundary value problems in a domain with edges, Trans. Moscow Math. Soc. 1 (1980), 49-97. 
  9. [9] V. G. Maz’ya and B. A. Plamenevskiĭ, Estimates in L p and in Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary, Amer. Math. Soc. Transl. (2) 123 (1984), 1-56. 
  10. [10] V. G. Maz'ya und J. Rossmann, Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten, Math. Nachr. 138 (1988), 27-53. Zbl0672.35020
  11. [11] V. G. Maz'ya und J. Rossmann, On a problem of Babuška (Stable asymptotics of the solution of the Dirichlet problem for elliptic equations of second order in domains with angular points), preprint LiTH-MAT-R-90-33, Linköping University, 1991. 
  12. [12] V. A. Nikishkin, Singularities of the solution of the Dirichlet problem for a second order equation in a neighborhood of an edge, Moscow Univ. Math. Bull. 34 (2) (1979), 53-64. Zbl0433.35027
  13. [13] S. Rempel and B. W. Schulze, Asymptotics for Elliptic Mixed Boundary Problems, Akademie-Verlag, Berlin 1989. Zbl0689.35104
  14. [14] B. Schmutzler, The structure of branching asymptotics for elliptic boundary value problems in domains with edges, in: International Workshop 'Analysis in Domains and on Manifolds with Singularities', Breitenbrunn 1990, Teubner, Leipzig 1991, to appear. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.