Edge asymptotics on a skew cylinder: complex variable form
Martin Costabel; Monique Dauge
Banach Center Publications (1992)
- Volume: 27, Issue: 1, page 81-90
- ISSN: 0137-6934
Access Full Article
topHow to cite
topCostabel, Martin, and Dauge, Monique. "Edge asymptotics on a skew cylinder: complex variable form." Banach Center Publications 27.1 (1992): 81-90. <http://eudml.org/doc/262820>.
@article{Costabel1992,
author = {Costabel, Martin, Dauge, Monique},
journal = {Banach Center Publications},
language = {eng},
number = {1},
pages = {81-90},
title = {Edge asymptotics on a skew cylinder: complex variable form},
url = {http://eudml.org/doc/262820},
volume = {27},
year = {1992},
}
TY - JOUR
AU - Costabel, Martin
AU - Dauge, Monique
TI - Edge asymptotics on a skew cylinder: complex variable form
JO - Banach Center Publications
PY - 1992
VL - 27
IS - 1
SP - 81
EP - 90
LA - eng
UR - http://eudml.org/doc/262820
ER -
References
top- [1] M. Costabel and M. Dauge, Edge asymptotics on a skew cylinder, in: International Workshop 'Analysis in Domains and on Manifolds with Singularities', Breitenbrunn 1990, Teubner, Leipzig 1991, to appear.
- [2] M. Costabel and M. Dauge, General edge asymptotics of solutions of second order elliptic boundary value problems II, Publications de Laboratoire d'Analyse Numérique R91017, Université de Paris VI, 1991.
- [3] M. Dauge, Elliptic Boundary Value Problems in Corner Domains-Smoothness and Asymptotics of Solutions, Lecture Notes in Math. 1341, Springer, Berlin 1988.
- [4] P. Grisvard, Boundary Value Problems in Non-Smooth Domains, Pitman, London 1985. Zbl0695.35060
- [5] V. A. Kondrat'ev, Boundary-value problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc. 16 (1967), 227-313.
- [6] V. A. Kondrat'ev, Singularities of a solution of Dirichlet's problem for a second order elliptic equation in a neighborhood of an edge, Differential Equations 13 (1970), 1411-1415.
- [7] R. S. Lehman, Developments at an analytic corner of solutions of elliptic partial differential equations, J. Math. Mech. 8 (1959), 727-760. Zbl0094.29702
- [8] V. G. Maz’ya and B. A. Plamenevskiĭ, estimates of solutions of elliptic boundary value problems in a domain with edges, Trans. Moscow Math. Soc. 1 (1980), 49-97.
- [9] V. G. Maz’ya and B. A. Plamenevskiĭ, Estimates in and in Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary, Amer. Math. Soc. Transl. (2) 123 (1984), 1-56.
- [10] V. G. Maz'ya und J. Rossmann, Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten, Math. Nachr. 138 (1988), 27-53. Zbl0672.35020
- [11] V. G. Maz'ya und J. Rossmann, On a problem of Babuška (Stable asymptotics of the solution of the Dirichlet problem for elliptic equations of second order in domains with angular points), preprint LiTH-MAT-R-90-33, Linköping University, 1991.
- [12] V. A. Nikishkin, Singularities of the solution of the Dirichlet problem for a second order equation in a neighborhood of an edge, Moscow Univ. Math. Bull. 34 (2) (1979), 53-64. Zbl0433.35027
- [13] S. Rempel and B. W. Schulze, Asymptotics for Elliptic Mixed Boundary Problems, Akademie-Verlag, Berlin 1989. Zbl0689.35104
- [14] B. Schmutzler, The structure of branching asymptotics for elliptic boundary value problems in domains with edges, in: International Workshop 'Analysis in Domains and on Manifolds with Singularities', Breitenbrunn 1990, Teubner, Leipzig 1991, to appear.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.