On some generalization of box splines
Annales Polonici Mathematici (1999)
- Volume: 72, Issue: 3, page 261-271
 - ISSN: 0066-2216
 
Access Full Article
topAbstract
topHow to cite
topWronicz, Zygmunt. "On some generalization of box splines." Annales Polonici Mathematici 72.3 (1999): 261-271. <http://eudml.org/doc/262844>.
@article{Wronicz1999,
	abstract = {We give a generalization of box splines. We prove some of their properties and we give applications to interpolation and approximation of functions.},
	author = {Wronicz, Zygmunt},
	journal = {Annales Polonici Mathematici},
	keywords = {approximation; Chebyshevian splines; box splines; interpolation},
	language = {eng},
	number = {3},
	pages = {261-271},
	title = {On some generalization of box splines},
	url = {http://eudml.org/doc/262844},
	volume = {72},
	year = {1999},
}
TY  - JOUR
AU  - Wronicz, Zygmunt
TI  - On some generalization of box splines
JO  - Annales Polonici Mathematici
PY  - 1999
VL  - 72
IS  - 3
SP  - 261
EP  - 271
AB  - We give a generalization of box splines. We prove some of their properties and we give applications to interpolation and approximation of functions.
LA  - eng
KW  - approximation; Chebyshevian splines; box splines; interpolation
UR  - http://eudml.org/doc/262844
ER  - 
References
top- [1] B. D. Bojanov, H. A. Hakopian, and A. A. Sahakian, Spline Functions and Multivariate Interpolations, Kluwer, 1993. Zbl0772.41011
 - [2] C. de Boor and R. De Vore, Approximation by smooth multivariate splines, Trans. Amer Math. Soc. 276 (1983), 775-788. Zbl0529.41010
 - [3] C. de Boor and K. Höllig, B-splines from parallelepipeds, J. Anal. Math. 42 (1982/83), 99-115. Zbl0534.41007
 - [4] C. de Boor, K. Höllig, and S. Riemenschneider, Box Splines, Springer, 1993. Zbl0814.41012
 - [5] C. de Boor, R. De Vore, and A. Ron, On the construction of multivariate (pre)wavelets, Constr. Approx. 9(1993), 123-166. Zbl0773.41013
 - [6] K. Dziedziul, Box Splines, Wyd. P.G., Gdańsk, 1997 (in Polish).
 - [7] G. Fix and G. Strang, A Fourier analysis of the finite element variational method, in: Constructive Aspects of Functional Analysis, G. Geymonat (ed.), Cremonese, Rome, 1973, 793-840.
 - [8] K. Jetter, Multivariate approximation from the cardinal interpolation point of view, in: Approximation Theory VII (Austin, TX, 1992), E. W. Cheney, C. K. Chui, and L. L. Schumaker (eds.), Academic Press, 1993, 131-161. Zbl0767.41005
 - [9] S. Karlin and W. J. Studden, Tchebysheff Systems: with Applications in Analysis and Statistics, Interscience, New York, 1966. Zbl0153.38902
 - [10] J. K. Kowalski, Application of box splines to the approximation of Sobolev spaces, J. Approx. Theory 61 (1990), 55-73. Zbl0709.41007
 - [11] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, 1971. Zbl0232.42007
 - [12] Z. Wronicz, Chebyshevian splines, Dissertationes Math. 305 (1990).
 - [13] Z. Wronicz, On some generalization of box splines, Preprint 34 (January 97), Instytut Matematyki AGH. Zbl0959.41009
 - [14] Z. Wronicz, On some properties of box splines, Preprint 25 (January 98), Wydział Matematyki Stosowanej AGH. Zbl0959.41009
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.