Unitary asymptotes of Hilbert space operators
Banach Center Publications (1994)
- Volume: 30, Issue: 1, page 191-201
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topKérchy, László. "Unitary asymptotes of Hilbert space operators." Banach Center Publications 30.1 (1994): 191-201. <http://eudml.org/doc/262850>.
@article{Kérchy1994,
abstract = {In this survey article we are going to present the effectiveness of the use of unitary asymptotes in the study of Hilbert space operators.},
author = {Kérchy, László},
journal = {Banach Center Publications},
keywords = {unitary asymptotes},
language = {eng},
number = {1},
pages = {191-201},
title = {Unitary asymptotes of Hilbert space operators},
url = {http://eudml.org/doc/262850},
volume = {30},
year = {1994},
}
TY - JOUR
AU - Kérchy, László
TI - Unitary asymptotes of Hilbert space operators
JO - Banach Center Publications
PY - 1994
VL - 30
IS - 1
SP - 191
EP - 201
AB - In this survey article we are going to present the effectiveness of the use of unitary asymptotes in the study of Hilbert space operators.
LA - eng
KW - unitary asymptotes
UR - http://eudml.org/doc/262850
ER -
References
top- [1] S. Banach, Théorie des Opérations Linéaires, Chelsea, New York, 1955. Zbl0067.08902
- [2] H. Bercovici, Operator Theory and Arithmetic in , Math. Surveys Monographs 26, Amer. Math. Soc., Providence, R.I., 1988.
- [3] H. Bercovici, Commuting power-bounded operators, Acta Sci. Math. (Szeged) 57 (1993), 55-64. Zbl0819.47017
- [4] H. Bercovici and L. Kérchy, On the spectra of -contractions, Proc. Amer. Math. Soc. 95 (1985), 412-418. Zbl0606.47014
- [5] H. Bercovici and K. Takahashi, On the reflexivity of contractions on Hilbert space, J. London Math. Soc. (2) 32 (1985), 149-156. Zbl0536.47009
- [6] J. B. Conway, A Course in Functional Analysis, Springer, New York, 1985. Zbl0558.46001
- [7] M. Day, Means for bounded functions and ergodicity of the bounded representations of semigroups, Trans. Amer. Math. Soc. 69 (1950), 276-291. Zbl0039.12301
- [8] J. A. Deddens and P. A. Fillmore, Reflexive linear transformations, Linear Algebra Appl. 10 (1975), 89-93. Zbl0301.15011
- [9] N. Dunford and J. Schwartz, Linear Operators. II, Interscience, New York, 1963.
- [10] S. R. Foguel, A counterexample to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964), 788-790. Zbl0124.06602
- [11] P. R. Halmos, On Foguel's answer to Nagy's question, ibid., 791-793. Zbl0123.09701
- [12] H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964.
- [13] E. Hewitt and K. Ross, Abstract Harmonic Analysis. I, Springer, Berlin, 1963. Zbl0115.10603
- [14] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc., Providence, 1957.
- [15] T. B. Hoover, Quasi-similarity of operators, Illinois J. Math. 16 (1972), 678-686. Zbl0249.47014
- [16] L. Kérchy, A description of invariant subspaces of -contractions, J. Operator Theory 15 (1986), 327-344. Zbl0602.47004
- [17] L. Kérchy, Contractions being weakly similar to unitaries, in: Oper. Theory: Adv. Appl. 17, Birkhäuser, Basel, 1986, 187-200. Zbl0586.47008
- [18] L. Kérchy, On the spectra of contractions belonging to special classes, J. Funct. Anal. 67 (1986), 153-166. Zbl0588.47014
- [19] L. Kérchy, On the residual parts of completely non-unitary contractions, Acta Math. Hungar. 50 (1987), 127-145. Zbl0632.47006
- [20] L. Kérchy, Invariant subspaces of -contractions with non-reductive unitary extensions, Bull. London Math. Soc. 19 (1987), 161-166. Zbl0594.47007
- [21] L. Kérchy, On a conjecture of Teodorescu and Vasyunin, in: Oper. Theory: Adv. Appl. 28, Birkhäuser, Basel, 1988, 169-172. Zbl0649.47004
- [22] L. Kérchy, Isometric asymptotes of power bounded operators, Indiana Univ. Math. J. 38 (1989), 173-188. Zbl0693.47014
- [23] L. Kérchy, On the functional calculus of contractions with nonvanishing unitary asymptotes, Michigan Math. J. 37 (1990), 323-338. Zbl0744.47011
- [24] L. Kérchy, On the reducing essential spectra of contractions, Acta Sci. Math. (Szeged) 57 (1993), 175-198. Zbl0818.47006
- [25] N. K. Nikolskiĭ and V. I. Vasyunin, A unified approach to function models, and the transcription problem, in: Oper. Theory: Adv. Appl. 41, Birkhäuser, Basel, 1989, 405-434. Zbl0685.47006
- [26] V. V. Peller, Estimates of functions of power bounded operators on Hilbert space, J. Operator Theory 7 (1982), 341-372. Zbl0485.47007
- [27] V. Pták, Construction of dilations, Exposition. Math. 10 (1992), 151-170. Zbl0778.47007
- [28] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer, New York, 1973. Zbl0269.47003
- [29] F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar, New York, 1955.
- [30] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
- [31] N. Salinas, Reducing essential eigenvalues, Duke Math. J. 40 (1973), 561-580. Zbl0292.47001
- [32] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511-517. Zbl0171.33703
- [33] B. Sz.-Nagy, On uniformly bounded linear transformations in Hilbert space, Acta Sci. Math. (Szeged) 11 (1947), 152-157.
- [34] B. Sz.-Nagy, Sur les contractions de l'espace de Hilbert, ibid. 15 (1953), 87-92. Zbl0052.12203
- [35] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland and Akadémiai Kiadó, Amsterdam-Budapest, 1970.
- [36] K. Takahashi, The reflexivity of contractions with nonreductive *-residual parts, Michigan Math. J. 34 (1987), 153-159. Zbl0618.47011
- [37] W. R. Wogen, On reflexivity and quasisimilarity, preprint.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.