Unitary asymptotes of Hilbert space operators

László Kérchy

Banach Center Publications (1994)

  • Volume: 30, Issue: 1, page 191-201
  • ISSN: 0137-6934

Abstract

top
In this survey article we are going to present the effectiveness of the use of unitary asymptotes in the study of Hilbert space operators.

How to cite

top

Kérchy, László. "Unitary asymptotes of Hilbert space operators." Banach Center Publications 30.1 (1994): 191-201. <http://eudml.org/doc/262850>.

@article{Kérchy1994,
abstract = {In this survey article we are going to present the effectiveness of the use of unitary asymptotes in the study of Hilbert space operators.},
author = {Kérchy, László},
journal = {Banach Center Publications},
keywords = {unitary asymptotes},
language = {eng},
number = {1},
pages = {191-201},
title = {Unitary asymptotes of Hilbert space operators},
url = {http://eudml.org/doc/262850},
volume = {30},
year = {1994},
}

TY - JOUR
AU - Kérchy, László
TI - Unitary asymptotes of Hilbert space operators
JO - Banach Center Publications
PY - 1994
VL - 30
IS - 1
SP - 191
EP - 201
AB - In this survey article we are going to present the effectiveness of the use of unitary asymptotes in the study of Hilbert space operators.
LA - eng
KW - unitary asymptotes
UR - http://eudml.org/doc/262850
ER -

References

top
  1. [1] S. Banach, Théorie des Opérations Linéaires, Chelsea, New York, 1955. Zbl0067.08902
  2. [2] H. Bercovici, Operator Theory and Arithmetic in H , Math. Surveys Monographs 26, Amer. Math. Soc., Providence, R.I., 1988. 
  3. [3] H. Bercovici, Commuting power-bounded operators, Acta Sci. Math. (Szeged) 57 (1993), 55-64. Zbl0819.47017
  4. [4] H. Bercovici and L. Kérchy, On the spectra of C 11 -contractions, Proc. Amer. Math. Soc. 95 (1985), 412-418. Zbl0606.47014
  5. [5] H. Bercovici and K. Takahashi, On the reflexivity of contractions on Hilbert space, J. London Math. Soc. (2) 32 (1985), 149-156. Zbl0536.47009
  6. [6] J. B. Conway, A Course in Functional Analysis, Springer, New York, 1985. Zbl0558.46001
  7. [7] M. Day, Means for bounded functions and ergodicity of the bounded representations of semigroups, Trans. Amer. Math. Soc. 69 (1950), 276-291. Zbl0039.12301
  8. [8] J. A. Deddens and P. A. Fillmore, Reflexive linear transformations, Linear Algebra Appl. 10 (1975), 89-93. Zbl0301.15011
  9. [9] N. Dunford and J. Schwartz, Linear Operators. II, Interscience, New York, 1963. 
  10. [10] S. R. Foguel, A counterexample to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964), 788-790. Zbl0124.06602
  11. [11] P. R. Halmos, On Foguel's answer to Nagy's question, ibid., 791-793. Zbl0123.09701
  12. [12] H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964. 
  13. [13] E. Hewitt and K. Ross, Abstract Harmonic Analysis. I, Springer, Berlin, 1963. Zbl0115.10603
  14. [14] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc., Providence, 1957. 
  15. [15] T. B. Hoover, Quasi-similarity of operators, Illinois J. Math. 16 (1972), 678-686. Zbl0249.47014
  16. [16] L. Kérchy, A description of invariant subspaces of C 11 -contractions, J. Operator Theory 15 (1986), 327-344. Zbl0602.47004
  17. [17] L. Kérchy, Contractions being weakly similar to unitaries, in: Oper. Theory: Adv. Appl. 17, Birkhäuser, Basel, 1986, 187-200. Zbl0586.47008
  18. [18] L. Kérchy, On the spectra of contractions belonging to special classes, J. Funct. Anal. 67 (1986), 153-166. Zbl0588.47014
  19. [19] L. Kérchy, On the residual parts of completely non-unitary contractions, Acta Math. Hungar. 50 (1987), 127-145. Zbl0632.47006
  20. [20] L. Kérchy, Invariant subspaces of C 1 · -contractions with non-reductive unitary extensions, Bull. London Math. Soc. 19 (1987), 161-166. Zbl0594.47007
  21. [21] L. Kérchy, On a conjecture of Teodorescu and Vasyunin, in: Oper. Theory: Adv. Appl. 28, Birkhäuser, Basel, 1988, 169-172. Zbl0649.47004
  22. [22] L. Kérchy, Isometric asymptotes of power bounded operators, Indiana Univ. Math. J. 38 (1989), 173-188. Zbl0693.47014
  23. [23] L. Kérchy, On the functional calculus of contractions with nonvanishing unitary asymptotes, Michigan Math. J. 37 (1990), 323-338. Zbl0744.47011
  24. [24] L. Kérchy, On the reducing essential spectra of contractions, Acta Sci. Math. (Szeged) 57 (1993), 175-198. Zbl0818.47006
  25. [25] N. K. Nikolskiĭ and V. I. Vasyunin, A unified approach to function models, and the transcription problem, in: Oper. Theory: Adv. Appl. 41, Birkhäuser, Basel, 1989, 405-434. Zbl0685.47006
  26. [26] V. V. Peller, Estimates of functions of power bounded operators on Hilbert space, J. Operator Theory 7 (1982), 341-372. Zbl0485.47007
  27. [27] V. Pták, Construction of dilations, Exposition. Math. 10 (1992), 151-170. Zbl0778.47007
  28. [28] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer, New York, 1973. Zbl0269.47003
  29. [29] F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar, New York, 1955. 
  30. [30] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973. 
  31. [31] N. Salinas, Reducing essential eigenvalues, Duke Math. J. 40 (1973), 561-580. Zbl0292.47001
  32. [32] D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511-517. Zbl0171.33703
  33. [33] B. Sz.-Nagy, On uniformly bounded linear transformations in Hilbert space, Acta Sci. Math. (Szeged) 11 (1947), 152-157. 
  34. [34] B. Sz.-Nagy, Sur les contractions de l'espace de Hilbert, ibid. 15 (1953), 87-92. Zbl0052.12203
  35. [35] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland and Akadémiai Kiadó, Amsterdam-Budapest, 1970. 
  36. [36] K. Takahashi, The reflexivity of contractions with nonreductive *-residual parts, Michigan Math. J. 34 (1987), 153-159. Zbl0618.47011
  37. [37] W. R. Wogen, On reflexivity and quasisimilarity, preprint. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.