On the Kuramoto-Sivashinsky equation in a disk
Annales Polonici Mathematici (2000)
- Volume: 73, Issue: 3, page 227-256
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topVarlamov, Vladimir. "On the Kuramoto-Sivashinsky equation in a disk." Annales Polonici Mathematici 73.3 (2000): 227-256. <http://eudml.org/doc/262852>.
@article{Varlamov2000,
abstract = {We consider the first initial-boundary value problem for the 2-D Kuramoto-Sivashinsky equation in a unit disk with homogeneous boundary conditions, periodicity conditions in the angle, and small initial data. Apart from proving the existence and uniqueness of a global in time solution, we construct it in the form of a series in a small parameter present in the initial conditions. In the stable case we also obtain the uniform in space long-time asymptotic expansion of the constructed solution and its asymptotics with respect to the nonlinearity constant. The method can work for other dissipative parabolic equations with dispersion.},
author = {Varlamov, Vladimir},
journal = {Annales Polonici Mathematici},
keywords = {first initial-boundary value problem; long-time asymptotics; Kuramoto-Sivashinsky equation; disk; uniform in space long-time asymptotic expansion; existence and the uniqueness of a global in time solution; small initial data},
language = {eng},
number = {3},
pages = {227-256},
title = {On the Kuramoto-Sivashinsky equation in a disk},
url = {http://eudml.org/doc/262852},
volume = {73},
year = {2000},
}
TY - JOUR
AU - Varlamov, Vladimir
TI - On the Kuramoto-Sivashinsky equation in a disk
JO - Annales Polonici Mathematici
PY - 2000
VL - 73
IS - 3
SP - 227
EP - 256
AB - We consider the first initial-boundary value problem for the 2-D Kuramoto-Sivashinsky equation in a unit disk with homogeneous boundary conditions, periodicity conditions in the angle, and small initial data. Apart from proving the existence and uniqueness of a global in time solution, we construct it in the form of a series in a small parameter present in the initial conditions. In the stable case we also obtain the uniform in space long-time asymptotic expansion of the constructed solution and its asymptotics with respect to the nonlinearity constant. The method can work for other dissipative parabolic equations with dispersion.
LA - eng
KW - first initial-boundary value problem; long-time asymptotics; Kuramoto-Sivashinsky equation; disk; uniform in space long-time asymptotic expansion; existence and the uniqueness of a global in time solution; small initial data
UR - http://eudml.org/doc/262852
ER -
References
top- [1] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations, and the Inverse Scattering, London Math. Soc., Cambridge Univ. Press, 1991. Zbl0762.35001
- [2] D. Armbruster, G. Guckenheimer, and P. Holmes, Kuramoto-Sivashinsky dynamics on the center unstable manifold, SIAM J. Appl. Math. 49 (1989), 676-691. Zbl0687.34036
- [3] N. G. Berloff and L. N. Howard, Solitary and periodic solutions of nonlinear nonintegrable equations, Stud. Appl. Math. 99 (1997), 1-24. Zbl0880.35105
- [4] D. J. Berney, Long waves on liquid films, J. Math. Phys. 45 (1966), 150-155. Zbl0148.23003
- [5] K. Chandrasekharan, Elliptic Functions, Springer, Berlin, 1985.
- [6] P. Collet, J. P. Eckmann, H. Epstein, and J. Stubbe, A global attracting set for the Kuramoto-Sivashinsky equation, Comm. Math. Phys. 152 (1993), 203-214. Zbl0777.35073
- [7] C. Foiaş, B. Nicolaenko, G. R. Sell, and R. Temam, Inertial manifolds for dissipative partial differential equations, C. R. Acad. Sci. Paris Sér. I 301 (1995), 199-241.
- [8] C. Foiaş, B. Nicolaenko, G. R. Sell, and R. Temam, Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl. 67 (1988), 197-226. Zbl0694.35028
- [9] A. S. Fokas, Initial-boundary value problems for soliton equations, in: Proc. III Potsdam-V Kiev Internat. Workshop 1991, Springer, Berlin, 1992.
- [10] A. S. Fokas and A. R. Its, Soliton generation for initial-boundary value problems, Phys. Rev. Lett. 68 (1992), 3117-3120. Zbl0969.35537
- [11] A. S. Fokas and A. R. Its, The linearization of the initial-boundary value problem of the nonlinear Schrödinger equation, SIAM J. Math. Anal. 27 (1996), 738-764. Zbl0851.35122
- [12] J. Goodman, Stability of the Kuramoto-Sivashinsky equation and related systems, Comm. Pure Appl. Math. 47 (1994), 293-306. Zbl0809.35105
- [13] A. P. Hooper and R. Grimshaw, Nonlinear instability at the interface between two viscous fluids, Phys. Fluids 28 (1985), 37-45. Zbl0565.76051
- [14] E. Jahnke, F. Emde and F. Lösch, Tables of Higher Functions, 6th ed., Teubner, Stuttgart, 1960. Zbl0087.12801
- [15] Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from the thermal equilibrium, Progr. Theoret. Phys. 55 (1976), 356-369.
- [16] Y. Kuramoto and T. Yamada, Turbulent state in chemical reactions, ibid. 56 (1976), 679.
- [17] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer, New York, 1972.
- [18] D. Michelson, Steady solutions of the Kuramoto-Sivashinsky equation, Phys. D 19 (1986), 89-111. Zbl0603.35080
- [19] D. Michelson, Bunsen flames as steady solutions of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal. 23 (1991), 364-386. Zbl0787.34019
- [20] D. Michelson, Stability of the Bunsen flame profiles in the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal. 27 (1996), 765-781. Zbl0851.34020
- [21] L. Molinet, Local dissipativity in L₂ for the Kuramoto-Sivashinsky equation in spatial dimension two, J. Dynam. Differential Equations, to appear. Zbl0970.35132
- [22] P. I. Naumkin and I. A. Shishmarëv, Nonlinear Nonlocal Equations in the Theory of Waves, Transl. Math. Monographs 133, Amer. Math. Soc., Providence, RI, 1994. Zbl0802.35002
- [23] B. Nicolaenko and B. Scheurer, Remarks on the Kuramoto-Sivashinsky equation, Phys. D 12 (1984), 391-395. Zbl0576.35058
- [24] B. Nicolaenko, B. Scheurer, and R. Temam, Some global dynamical properties of the Kuramoto-Sivashinsky equation: nonlinear stability and attractors, ibid. 16 (1985), 155-183. Zbl0592.35013
- [25] F. W. J. Olver, Introduction to Asymptotics and Special Functions, Acad. Press, New York, 1974. Zbl0308.41023
- [26] S. V. Raghavan, J. B. McLeod, and W. O. Troy, A singular perturbation problem arising from the Kuramoto-Sivashinsky equation, Differential Integral Equations 19 (1997), 1-36. Zbl0879.34028
- [27] G. Raugel and G. Sell, Navier-Stokes equations on thin 3D domains. I: Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993), 503-568. Zbl0787.34039
- [28] G. R. Sell and M. Taboada, Local dissipativity and attractors for the Kuramoto-Sivashinsky equation in thin 2D domains, Nonlinear Anal. 18 (1992), 671-687. Zbl0784.35046
- [29] G. I. Sivashinsky, On flame propagation under conditions of stoichiometry, SIAM J. Appl. Math. 39 (1980), 67-82. Zbl0464.76055
- [30] G. I. Sivashinsky, Instabilities, pattern formation, and turbulence in flames, Ann. Rev. Fluid Mech. 15 (1983), 179-199. Zbl0538.76053
- [31] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Clarendon Press, Oxford, 1958. Zbl0097.27601
- [32] G. Tolstov, Fourier Series, Dover, New York, 1962.
- [33] J. Topper and T. Kawahara, Approximate equations for nonlinear waves on a viscous fluid, J. Phys. Soc. Japan 44 (1978), 663-666. Zbl1334.76054
- [34] W. C. Troy, The existence of steady solutions of the Kuramoto-Sivashinsky equation, J. Differential Equations 82 (1989), 269-313. Zbl0693.34053
- [35] V. V. Varlamov, On the Cauchy problem for the damped Boussinesq equation, Differential Integral Equations 9 (1996), 619-634. Zbl0844.35095
- [36] V. V. Varlamov, On spatially periodic solutions of the damped Boussinesq equation, ibid. 10 (1997), 1197-1211. Zbl0940.35162
- [37] V. V. Varlamov, On the initial-boundary value problem for the damped Boussinesq equation, Discrete Contin. Dynam. Systems 4 (1998), 431-444. Zbl0952.35103
- [38] V. V. Varlamov, Long-time asymptotics of solutions of the second initial-boundary value problem for the damped Boussinesq equation, Abstract Appl. Anal. 2 (1998), 97-115.
- [39] V. V. Varlamov, The third-order nonlinear evolution equation governing wave propagation in relaxing media, Stud. Appl. Math. 99 (1997), 25-47. Zbl0881.35079
- [40] V. V. Varlamov, On the damped Boussinesq equation in a circle, Nonlinear Anal. 38 (1999), 447-470. Zbl0938.35146
- [41] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, London, 1966. Zbl0174.36202
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.