On the stability of solutions of nonlinear parabolic differential-functional equations
Annales Polonici Mathematici (1996)
- Volume: 63, Issue: 2, page 155-165
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
- [2] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623-727. Zbl0093.10401
- [3] H. Amman, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J. 21 (1971), 125-146.
- [4] H. Amman, Supersolutions, monotone iterations and stability, J. Differential Equations 21 (1976), 363-377. Zbl0319.35039
- [5] S. Brzychczy, Approximate iterative method and the existence of solutions of nonlinear parabolic differential-functional equations, Ann. Polon. Math. 42 (1983), 37-43. Zbl0537.35044
- [6] S. Brzychczy, Chaplygin's method for a system of nonlinear parabolic differential-functional equations, Differentsial'nye Uravneniya 22 (1986), 705-708 (in Russian). Zbl0613.35041
- [7] S. Brzychczy, Existence of solution of the nonlinear Dirichlet problem for differential-functional equations of elliptic type, Ann. Polon. Math. 58 (1993), 139-146. Zbl0787.35114
- [8] O. Diekmann and N. M. Temme, Nonlinear Diffusion Problems, MC Syllabus 28, Mathematisch Centrum, Amsterdam, 1982.
- [9] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964. Zbl0144.34903
- [10] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin, 1983. Zbl0562.35001
- [11] M. A. Krasnosel'skiĭ, Topological Methods in the Theory of Nonlinear Integral Equations, Gostekhizdat, Moscow, 1956 (in Russian); English transl.: Macmillan, New York, 1964.
- [12] G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Monographs Adv. Texts and Surveys in Pure and Appl. Math. 27, Pitman, Boston, 1985.
- [13] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Nauka, Moscow, 1964 (in Russian); English transl.: Academic Press, New York, 1968.
- [14] D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1972), 979-1000. Zbl0223.35038
- [15] D. H. Sattinger, Topics in Stability and Bifurcation Theory, Lecture Notes in Math. 309, Springer, Berlin, 1973. Zbl0248.35003
- [16] J. Schauder, Über lineare elliptische Differentialgleichungen zweiter Ordnung, Math. Z. 38 (1934), 257-282. Zbl0008.25502
- [17] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, New York, 1983. Zbl0508.35002
- [18] J. Szarski, Strong maximum principle for nonlinear parabolic differential-functional inequalities, Ann. Polon. Math. 29 (1974), 207-214. Zbl0291.35048
- [19] M. M. Vaĭnberg, Variational Methods for the Study of Nonlinear Operators, Gostekhizdat, Moscow, 1956 (in Russian); English transl.: Holden-Day, San Francisco, 1964.
- [20] J. Wloka, Funktionalanalysis und Anwendungen, de Gruyter, Berlin, 1971.