Differential flatness and defect: an overview
Michel Fliess; Jean Lévine; Philippe Martin; Pierre Rouchon
Banach Center Publications (1995)
- Volume: 32, Issue: 1, page 209-225
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. Baillieul, Stable average motions of mechanical systems subject to periodic forcing, reprint, 1993. Zbl0793.70020
- [2] J. Bentsman, Vibrational control of a class of nonlinear multiplicative vibrations, IEEE Trans. Automat. Control 32 (1987), 711-716. Zbl0631.93056
- [3] A. Bressan and F. Rampazzo, On differential systems with quadratic impulses and their applications to Lagrangian mechanics, SIAM J. Control Optim. 31 (1993), 1205-1220. Zbl0780.34055
- [4] E. Cartan, Sur l'intégration de certains systèmes indéterminés d'équations différentielles, J. Reine Angew. Math. 145 (1915), 86-91; also in: Oeuvres Complètes, part II, vol. 2, CNRS, Paris, 1984, 1164-1174. Zbl45.0472.03
- [5] P. J. Cassidy, Differential algebraic groups, Amer. J. Math. 94 (1972), 891-954. Zbl0258.14013
- [6] B. Charlet, J. Lévine and R. Marino, On dynamic feedback linearization, Systems Control Letters 13 (1989), 143-151. Zbl0684.93043
- [7] B. Charlet, J. Lévine and R. Marino, Sufficient conditions for dynamic state feedback linearization, SIAM J. Control Optim. 29 (1991), 38-57. Zbl0739.93021
- [8] D. Claude, Everything you always wanted to know about linearization, in: M. Fliess and M. Hazewinkel (ed.), Algebraic and Geometric Methods in Nonlinear Control Theory, Reidel, Dordrecht, 1986, 181-226. Zbl0607.93027
- [9] P. M. Cohn, Free Rings and their Relations, 2nd ed., Academic Press, London, 1985. Zbl0659.16001
- [10] J. M. Coron, Linearized control systems and applications to smooth stabilization, SIAM J. Control Optim. 1994. Zbl0796.93097
- [11] E. Delaleau et M. Fliess, Algorithme de structure, filtrations et découplage, C.R. Acad. Sci. Paris Sér. I 315 (1992), 101-106. Zbl0791.68113
- [12] M. D. Di Benedetto, J. W. Grizzle and C. H. Moog, Rank invariants of nonlinear systems, SIAM J. Control Optim. 27 (1989), 658-672. Zbl0696.93033
- [13] S. Diop, Elimination in control theory, Math. Control Signals Systems 4 (1991), 17-32. Zbl0727.93025
- [14] S. Diop, Differential-algebraic decision methods and some applications to system theory, Theoret. Comput. Sci. 98 (1992), 137-161. Zbl0768.93014
- [15] M. Fliess, Automatique et corps différentiels, Forum Math. 1 (1989), 227-238. Zbl0701.93048
- [16] M. Fliess, Generalized controller canonical forms for linear and nonlinear dynamics, IEEE Trans. Automat. Control 35 (1990), 994-1001. Zbl0724.93010
- [17] M. Fliess, Some basic structural properties of generalized linear systems, Systems Control Letters 15 (1990), 391-396. Zbl0727.93024
- [18] M. Fliess, A remark on Willems' trajectory characterization of linear controllability, ibid. 19 (1992), 43-45. Zbl0765.93003
- [19] M. Fliess and S. T. Glad, An algebraic approach to linear and nonlinear control, in: H. J. Trentelman and J. C. Willems (eds.), Essays on Control: Perspectives in the Theory and its Applications, Birkhäuser, Boston, 1993, 223-267. Zbl0838.93021
- [20] M. Fliess and M. Hasler, Questioning the classical state space description via circuit examples, in: M. A. Kashoek, J. H. van Schuppen, and A. C. M. Ran (eds.), Realization and Modelling in System Theory, MTNS'89, volume I, Birkhäuser, Boston, 1990, 1-12.
- [21] M. Fliess, J. Lévine, P. Martin and P. Rouchon, On differentially flat nonlinear systems, in: Proc. IFAC-Symposium NOLCOS'92, Bordeaux, 1992, 408-412. Zbl0776.93038
- [22] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Sur les systèmes non linéaires différentiellement plats, C. R. Acad. Sci. Paris Sér. I 315 (1992), 619-624. Zbl0776.93038
- [23] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Défaut d'un système non linéaire et commande haute fréquence, ibid. 316 (1993), 513-518. Zbl0777.93044
- [24] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund, ibid. 317 (1993), 981-986. Zbl0796.93042
- [25] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Towards a new differential geometric setting in nonlinear control, in: Proc. Internat. Geometric Coll., Moscow, May 1993. Zbl0885.93014
- [26] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of nonlinear systems: introductory theory and examples, Internat. J. Control, 1995. Zbl0838.93022
- [27] M. Fliess, J. Lévine and P. Rouchon, A simplified approach of crane control via a generalized state-space model, in: Proc. 30th IEEE Control Decision Conf., Brighton, 1991, 736-741.
- [28] M. Fliess, J. Lévine, and P. Rouchon, A generalized state variable representation for a simplified crane description, Internat. J. Control 58 (1993), 277-283. Zbl0782.93049
- [29] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York, 1983. Zbl0515.34001
- [30] R. Hartshorne, Algebraic Geometry, Springer, New York, 1977.
- [31] D. Hilbert, Über den Begriff der Klasse von Differentialgleichungen, Math. Ann. 73 (1912), 95-108; also in: Gesammelte Abhandlungen, Vol. III, Chelsea, New York, 1965, 81-93.
- [32] A. Isidori, Control of nonlinear systems via dynamic state feedback, in: M. Fliess and M. Hazewinkel (eds.), Algebraic and Geometric Methods in Nonlinear Control Theory, Reidel, 1986.
- [33] A. Isidori, Nonlinear Control Systems, 2nd ed., Springer, New York, 1989.
- [34] A. Isidori, C. H. Moog, and A. De Luca, A sufficient condition for full linearization via dynamic state feedback, in: Proc. 25th IEEE Conf. Decision Control, 1986, 203-208.
- [35] N. Jacobson, Basic Algebra, I and II, 2nd ed., Freeman, New York, 1985. Zbl0557.16001
- [36] B. Jakubczyk, Remarks on equivalence and linearization of nonlinear systems, in: Proc. IFAC-Symposium NOLCOS'92, Bordeaux, 1992, 393-397.
- [37] B. Jakubczyk, Invariants of dynamic feedback and free systems, in: Proc. ECC'93, Groningen, 1993, 1510-1513.
- [38] J. Johnson, Kähler differentials and differential algebra, Ann. of Math. 89 (1969), 92-98. Zbl0179.34302
- [39] J. Johnson, Order for systems of differential equations and a generalization of the notion of differential ring, J. Algebra 78 (1982), 91-119. Zbl0496.12019
- [40] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, N.J., 1980.
- [41] E. R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York, 1973. Zbl0264.12102
- [42] E. R. Kolchin, Differential Algebraic Groups, Academic Press, Orlando, 1985. Zbl0556.12006
- [43] C.-W. Li and Y.-K. Feng, Functional reproducibility of general multivariable analytic nonlinear systems, Internat. J. Control 45 (1987), 255-268. Zbl0611.93038
- [44] P. Martin, Contribution à l'étude des systèmes diffèrentiellement plats, PhD thesis, École des Mines de Paris, 1992.
- [45] S. M. Meerkov, Principle of vibrational control: theory and applications, IEEE Trans. Automat. Control 25 (1980), 755-762. Zbl0454.93021
- [46] H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control Systems, Springer, New York, 1990. Zbl0701.93001
- [47] J. B. Pomet, A differential geometric setting for dynamic equivalence and dynamic linearization, this volume, 319-339. Zbl0838.93019
- [48] J. F. Ritt, Systems of differential equations i. theory of ideals, Amer. J. Math. 60 (1938), 535-548. Zbl0019.11601
- [49] J. F. Ritt, Differential Algebra, Amer. Math. Soc., New York, 1950.
- [50] A. Seidenberg, Some basic theorems in differential algebra (characteristic p, arbitrary), Trans. Amer. Math. Soc. 73 (1952), 174-190. Zbl0047.03502
- [51] W. F. Shadwick, Absolute equivalence and dynamic feedback linearization, Systems Control Letters 15 (1990), 35-39. Zbl0704.93037
- [52] E. D. Sontag, Finite dimensional open loop control generator for nonlinear control systems, Internat. J. Control 47 (1988), 537-556. Zbl0641.93035
- [53] E. D. Sontag, Universal nonsingular controls, Systems Control Letters 19 (1992), 221-224.
- [54] H. J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems, J. Differential Equations 12 (1972), 95-116. Zbl0242.49040
- [55] H. J. Sussmann and W. Liu, Limits of highly oscillatory controls and the approximation of general paths by admissible trajectories, in: Proc. 30th IEEE Control Decision Conf., Brighton, 1991, 437-442.
- [56] J. C. Willems, Paradigms and puzzles in the theory of dynamical systems, IEEE Trans. Automat. Control 36 (1991), 259-294. Zbl0737.93004
- [57] D. J. Winter, The Structure of Fields, Springer, New York, 1974. Zbl0292.12101
- [58] V. V. Zharinov, Geometrical Aspect of Partial Differential Equations, World Scientific, Singapore, 1992. Zbl0763.58002