Differential flatness and defect: an overview

Michel Fliess; Jean Lévine; Philippe Martin; Pierre Rouchon

Banach Center Publications (1995)

  • Volume: 32, Issue: 1, page 209-225
  • ISSN: 0137-6934

Abstract

top
We introduce flat systems, which are equivalent to linear ones via a special type of feedback called endogenous. Their physical properties are subsumed by a linearizing output and they might be regarded as providing another nonlinear extension of Kalman's controllability. The distance to flatness is measured by a non-negative integer, the defect. We utilize differential algebra which suits well to the fact that, in accordance with Willems' standpoint, flatness and defect are best defined without distinguishing between input, state, output and other variables. We treat an example of non-flat system, the variable-length pendulum. A high frequency control strategy is proposed such that the averaged system becomes flat.

How to cite

top

Fliess, Michel, et al. "Differential flatness and defect: an overview." Banach Center Publications 32.1 (1995): 209-225. <http://eudml.org/doc/262868>.

@article{Fliess1995,
abstract = {We introduce flat systems, which are equivalent to linear ones via a special type of feedback called endogenous. Their physical properties are subsumed by a linearizing output and they might be regarded as providing another nonlinear extension of Kalman's controllability. The distance to flatness is measured by a non-negative integer, the defect. We utilize differential algebra which suits well to the fact that, in accordance with Willems' standpoint, flatness and defect are best defined without distinguishing between input, state, output and other variables. We treat an example of non-flat system, the variable-length pendulum. A high frequency control strategy is proposed such that the averaged system becomes flat.},
author = {Fliess, Michel, Lévine, Jean, Martin, Philippe, Rouchon, Pierre},
journal = {Banach Center Publications},
language = {eng},
number = {1},
pages = {209-225},
title = {Differential flatness and defect: an overview},
url = {http://eudml.org/doc/262868},
volume = {32},
year = {1995},
}

TY - JOUR
AU - Fliess, Michel
AU - Lévine, Jean
AU - Martin, Philippe
AU - Rouchon, Pierre
TI - Differential flatness and defect: an overview
JO - Banach Center Publications
PY - 1995
VL - 32
IS - 1
SP - 209
EP - 225
AB - We introduce flat systems, which are equivalent to linear ones via a special type of feedback called endogenous. Their physical properties are subsumed by a linearizing output and they might be regarded as providing another nonlinear extension of Kalman's controllability. The distance to flatness is measured by a non-negative integer, the defect. We utilize differential algebra which suits well to the fact that, in accordance with Willems' standpoint, flatness and defect are best defined without distinguishing between input, state, output and other variables. We treat an example of non-flat system, the variable-length pendulum. A high frequency control strategy is proposed such that the averaged system becomes flat.
LA - eng
UR - http://eudml.org/doc/262868
ER -

References

top
  1. [1] J. Baillieul, Stable average motions of mechanical systems subject to periodic forcing, reprint, 1993. Zbl0793.70020
  2. [2] J. Bentsman, Vibrational control of a class of nonlinear multiplicative vibrations, IEEE Trans. Automat. Control 32 (1987), 711-716. Zbl0631.93056
  3. [3] A. Bressan and F. Rampazzo, On differential systems with quadratic impulses and their applications to Lagrangian mechanics, SIAM J. Control Optim. 31 (1993), 1205-1220. Zbl0780.34055
  4. [4] E. Cartan, Sur l'intégration de certains systèmes indéterminés d'équations différentielles, J. Reine Angew. Math. 145 (1915), 86-91; also in: Oeuvres Complètes, part II, vol. 2, CNRS, Paris, 1984, 1164-1174. Zbl45.0472.03
  5. [5] P. J. Cassidy, Differential algebraic groups, Amer. J. Math. 94 (1972), 891-954. Zbl0258.14013
  6. [6] B. Charlet, J. Lévine and R. Marino, On dynamic feedback linearization, Systems Control Letters 13 (1989), 143-151. Zbl0684.93043
  7. [7] B. Charlet, J. Lévine and R. Marino, Sufficient conditions for dynamic state feedback linearization, SIAM J. Control Optim. 29 (1991), 38-57. Zbl0739.93021
  8. [8] D. Claude, Everything you always wanted to know about linearization, in: M. Fliess and M. Hazewinkel (ed.), Algebraic and Geometric Methods in Nonlinear Control Theory, Reidel, Dordrecht, 1986, 181-226. Zbl0607.93027
  9. [9] P. M. Cohn, Free Rings and their Relations, 2nd ed., Academic Press, London, 1985. Zbl0659.16001
  10. [10] J. M. Coron, Linearized control systems and applications to smooth stabilization, SIAM J. Control Optim. 1994. Zbl0796.93097
  11. [11] E. Delaleau et M. Fliess, Algorithme de structure, filtrations et découplage, C.R. Acad. Sci. Paris Sér. I 315 (1992), 101-106. Zbl0791.68113
  12. [12] M. D. Di Benedetto, J. W. Grizzle and C. H. Moog, Rank invariants of nonlinear systems, SIAM J. Control Optim. 27 (1989), 658-672. Zbl0696.93033
  13. [13] S. Diop, Elimination in control theory, Math. Control Signals Systems 4 (1991), 17-32. Zbl0727.93025
  14. [14] S. Diop, Differential-algebraic decision methods and some applications to system theory, Theoret. Comput. Sci. 98 (1992), 137-161. Zbl0768.93014
  15. [15] M. Fliess, Automatique et corps différentiels, Forum Math. 1 (1989), 227-238. Zbl0701.93048
  16. [16] M. Fliess, Generalized controller canonical forms for linear and nonlinear dynamics, IEEE Trans. Automat. Control 35 (1990), 994-1001. Zbl0724.93010
  17. [17] M. Fliess, Some basic structural properties of generalized linear systems, Systems Control Letters 15 (1990), 391-396. Zbl0727.93024
  18. [18] M. Fliess, A remark on Willems' trajectory characterization of linear controllability, ibid. 19 (1992), 43-45. Zbl0765.93003
  19. [19] M. Fliess and S. T. Glad, An algebraic approach to linear and nonlinear control, in: H. J. Trentelman and J. C. Willems (eds.), Essays on Control: Perspectives in the Theory and its Applications, Birkhäuser, Boston, 1993, 223-267. Zbl0838.93021
  20. [20] M. Fliess and M. Hasler, Questioning the classical state space description via circuit examples, in: M. A. Kashoek, J. H. van Schuppen, and A. C. M. Ran (eds.), Realization and Modelling in System Theory, MTNS'89, volume I, Birkhäuser, Boston, 1990, 1-12. 
  21. [21] M. Fliess, J. Lévine, P. Martin and P. Rouchon, On differentially flat nonlinear systems, in: Proc. IFAC-Symposium NOLCOS'92, Bordeaux, 1992, 408-412. Zbl0776.93038
  22. [22] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Sur les systèmes non linéaires différentiellement plats, C. R. Acad. Sci. Paris Sér. I 315 (1992), 619-624. Zbl0776.93038
  23. [23] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Défaut d'un système non linéaire et commande haute fréquence, ibid. 316 (1993), 513-518. Zbl0777.93044
  24. [24] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund, ibid. 317 (1993), 981-986. Zbl0796.93042
  25. [25] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Towards a new differential geometric setting in nonlinear control, in: Proc. Internat. Geometric Coll., Moscow, May 1993. Zbl0885.93014
  26. [26] M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of nonlinear systems: introductory theory and examples, Internat. J. Control, 1995. Zbl0838.93022
  27. [27] M. Fliess, J. Lévine and P. Rouchon, A simplified approach of crane control via a generalized state-space model, in: Proc. 30th IEEE Control Decision Conf., Brighton, 1991, 736-741. 
  28. [28] M. Fliess, J. Lévine, and P. Rouchon, A generalized state variable representation for a simplified crane description, Internat. J. Control 58 (1993), 277-283. Zbl0782.93049
  29. [29] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York, 1983. Zbl0515.34001
  30. [30] R. Hartshorne, Algebraic Geometry, Springer, New York, 1977. 
  31. [31] D. Hilbert, Über den Begriff der Klasse von Differentialgleichungen, Math. Ann. 73 (1912), 95-108; also in: Gesammelte Abhandlungen, Vol. III, Chelsea, New York, 1965, 81-93. 
  32. [32] A. Isidori, Control of nonlinear systems via dynamic state feedback, in: M. Fliess and M. Hazewinkel (eds.), Algebraic and Geometric Methods in Nonlinear Control Theory, Reidel, 1986. 
  33. [33] A. Isidori, Nonlinear Control Systems, 2nd ed., Springer, New York, 1989. 
  34. [34] A. Isidori, C. H. Moog, and A. De Luca, A sufficient condition for full linearization via dynamic state feedback, in: Proc. 25th IEEE Conf. Decision Control, 1986, 203-208. 
  35. [35] N. Jacobson, Basic Algebra, I and II, 2nd ed., Freeman, New York, 1985. Zbl0557.16001
  36. [36] B. Jakubczyk, Remarks on equivalence and linearization of nonlinear systems, in: Proc. IFAC-Symposium NOLCOS'92, Bordeaux, 1992, 393-397. 
  37. [37] B. Jakubczyk, Invariants of dynamic feedback and free systems, in: Proc. ECC'93, Groningen, 1993, 1510-1513. 
  38. [38] J. Johnson, Kähler differentials and differential algebra, Ann. of Math. 89 (1969), 92-98. Zbl0179.34302
  39. [39] J. Johnson, Order for systems of differential equations and a generalization of the notion of differential ring, J. Algebra 78 (1982), 91-119. Zbl0496.12019
  40. [40] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, N.J., 1980. 
  41. [41] E. R. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York, 1973. Zbl0264.12102
  42. [42] E. R. Kolchin, Differential Algebraic Groups, Academic Press, Orlando, 1985. Zbl0556.12006
  43. [43] C.-W. Li and Y.-K. Feng, Functional reproducibility of general multivariable analytic nonlinear systems, Internat. J. Control 45 (1987), 255-268. Zbl0611.93038
  44. [44] P. Martin, Contribution à l'étude des systèmes diffèrentiellement plats, PhD thesis, École des Mines de Paris, 1992. 
  45. [45] S. M. Meerkov, Principle of vibrational control: theory and applications, IEEE Trans. Automat. Control 25 (1980), 755-762. Zbl0454.93021
  46. [46] H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control Systems, Springer, New York, 1990. Zbl0701.93001
  47. [47] J. B. Pomet, A differential geometric setting for dynamic equivalence and dynamic linearization, this volume, 319-339. Zbl0838.93019
  48. [48] J. F. Ritt, Systems of differential equations i. theory of ideals, Amer. J. Math. 60 (1938), 535-548. Zbl0019.11601
  49. [49] J. F. Ritt, Differential Algebra, Amer. Math. Soc., New York, 1950. 
  50. [50] A. Seidenberg, Some basic theorems in differential algebra (characteristic p, arbitrary), Trans. Amer. Math. Soc. 73 (1952), 174-190. Zbl0047.03502
  51. [51] W. F. Shadwick, Absolute equivalence and dynamic feedback linearization, Systems Control Letters 15 (1990), 35-39. Zbl0704.93037
  52. [52] E. D. Sontag, Finite dimensional open loop control generator for nonlinear control systems, Internat. J. Control 47 (1988), 537-556. Zbl0641.93035
  53. [53] E. D. Sontag, Universal nonsingular controls, Systems Control Letters 19 (1992), 221-224. 
  54. [54] H. J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems, J. Differential Equations 12 (1972), 95-116. Zbl0242.49040
  55. [55] H. J. Sussmann and W. Liu, Limits of highly oscillatory controls and the approximation of general paths by admissible trajectories, in: Proc. 30th IEEE Control Decision Conf., Brighton, 1991, 437-442. 
  56. [56] J. C. Willems, Paradigms and puzzles in the theory of dynamical systems, IEEE Trans. Automat. Control 36 (1991), 259-294. Zbl0737.93004
  57. [57] D. J. Winter, The Structure of Fields, Springer, New York, 1974. Zbl0292.12101
  58. [58] V. V. Zharinov, Geometrical Aspect of Partial Differential Equations, World Scientific, Singapore, 1992. Zbl0763.58002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.