# On uniqueness and successive approximations in the Darboux problem for the equation ${u}_{xy}=f(x,y,u,{u}_{x},{u}_{y},{\int}_{0}^{x}{\int}_{0}^{y}g(x,y,s,t,u(s,t),{u}_{s}(s,t),{u}_{t}(s,t))dsdt)$

Annales Polonici Mathematici (1965)

- Volume: 17, Issue: 1, page 1-11
- ISSN: 0066-2216

## Access Full Article

top## How to cite

topB. Palczewski. "On uniqueness and successive approximations in the Darboux problem for the equation $u_{xy} = f(x, y, u, u_x, u_y, ∫^x_0 ∫^y_0 g(x, y, s, t, u(s, t), u_s(s, t), u_t(s, t)) ds dt)$." Annales Polonici Mathematici 17.1 (1965): 1-11. <http://eudml.org/doc/264072>.

@article{B1965,

author = {B. Palczewski},

journal = {Annales Polonici Mathematici},

keywords = {partial differential equations},

language = {eng},

number = {1},

pages = {1-11},

title = {On uniqueness and successive approximations in the Darboux problem for the equation $u_\{xy\} = f(x, y, u, u_x, u_y, ∫^x_0 ∫^y_0 g(x, y, s, t, u(s, t), u_s(s, t), u_t(s, t)) ds dt)$},

url = {http://eudml.org/doc/264072},

volume = {17},

year = {1965},

}

TY - JOUR

AU - B. Palczewski

TI - On uniqueness and successive approximations in the Darboux problem for the equation $u_{xy} = f(x, y, u, u_x, u_y, ∫^x_0 ∫^y_0 g(x, y, s, t, u(s, t), u_s(s, t), u_t(s, t)) ds dt)$

JO - Annales Polonici Mathematici

PY - 1965

VL - 17

IS - 1

SP - 1

EP - 11

LA - eng

KW - partial differential equations

UR - http://eudml.org/doc/264072

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.