Continuous isometric semigroups and reflexivity
Annales Polonici Mathematici (1991)
- Volume: 54, Issue: 1, page 21-28
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. A. Deddens, Every isometry is reflexive. Proc. Amer, Math. Soc. 28 (1971), 509-511. Zbl0213.14304
- [2] D. Gaşpar and N. Suciu, On the structure of isometric semigroups, in: Oper. Theory: Adv. Appl. 14, Birkhauser, Basel 1984, 125-139.
- [3] M. Ptak, On the reflexivity of pairs of isometries and of tensor products of some operator algebras. Studia Math. 83 (1986), 47-55. Zbl0549.47012
- [4] M. Ptak, Reflexivity of multiplication operators on certain domains in , Bull. Polish Acad, Sci. Math. 37 (1989), 217-220. Zbl0771.47017
- [5] M. Ptak, Reflexivity of pairs of shifts, Proc. Amer. Math. Soc. 109 (1990), 409 -415. Zbl0734.47023
- [6] H. Radjavi and P. Rosenthal, Invariant Subspaces, Springer, New York 1973. Zbl0269.47003
- [7] M. Słociński, On the Wold-type decomposition of a pair of commuting Isometries, Ann. Polon. Math. 37 (1980), 255-262. Zbl0485.47018
- [8] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam 1974. Zbl0201.45003