Piecewise convex transformations with no finite invariant measure
Annales Polonici Mathematici (1991)
- Volume: 54, Issue: 1, page 59-68
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. Bowen, Invariant measures for Markov maps of the interval, Comm. Math. Phya. 69 (1979), 1-17. Zbl0421.28016
- [2] S. R. Foguel, The Ergodic Theory of Markov Processes, van Nostrand Reinhold, New York 1969.
- [3] P. Kacprowski, On the existence of invariant measures for piecewise smooth transformations, Ann. Polon. Math. 40 (1983), 179-184.
- [4] A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge University Press, 1985. Zbl0606.58002
- [5] A. Lasota and J. A. Yorke, Exact dynamical systems and the Frobenius- Perron operators, Trans. Amer. Math. Soc. 273 (1982), 375-384. Zbl0524.28021
- [6] F. Schweiger, Numbertheoretical endomorphisms with a-finite invariant measure, Israel J. Math. 21 (1975), 308-318. Zbl0314.10037
- [7] F. Schweiger, Some remarks on ergodicity and invariant measures, Michigan Math. J. 22 (1975), 308-318.
- [8] M. Thaler, Estimates of the invariant densities of endomorphisms with indifferent fixed points, Israel J. Math. 37 (1980), 303-314. Zbl0447.28016
- [9] M. Thaler, Transformations on [0, 1] with infinite invariant measure, ibid. 46 (1983), 67-96.