The Turàn number of the graph 3P4

Halina Bielak; Sebastian Kieliszek

Annales UMCS, Mathematica (2014)

  • Volume: 68, Issue: 1, page 21-29
  • ISSN: 2083-7402

Abstract

top
Let ex (n,G) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let Pi denote a path consisting of i vertices and let mPi denote m disjoint copies of Pi. In this paper we count ex(n, 3P4)

How to cite

top

Halina Bielak, and Sebastian Kieliszek. "The Turàn number of the graph 3P4." Annales UMCS, Mathematica 68.1 (2014): 21-29. <http://eudml.org/doc/266538>.

@article{HalinaBielak2014,
abstract = {Let ex (n,G) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let Pi denote a path consisting of i vertices and let mPi denote m disjoint copies of Pi. In this paper we count ex(n, 3P4)},
author = {Halina Bielak, Sebastian Kieliszek},
journal = {Annales UMCS, Mathematica},
keywords = {Forests; trees; Turán number; forests},
language = {eng},
number = {1},
pages = {21-29},
title = {The Turàn number of the graph 3P4},
url = {http://eudml.org/doc/266538},
volume = {68},
year = {2014},
}

TY - JOUR
AU - Halina Bielak
AU - Sebastian Kieliszek
TI - The Turàn number of the graph 3P4
JO - Annales UMCS, Mathematica
PY - 2014
VL - 68
IS - 1
SP - 21
EP - 29
AB - Let ex (n,G) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let Pi denote a path consisting of i vertices and let mPi denote m disjoint copies of Pi. In this paper we count ex(n, 3P4)
LA - eng
KW - Forests; trees; Turán number; forests
UR - http://eudml.org/doc/266538
ER -

References

top
  1. [1] Bushaw, N., Kettle, N., Tur´an numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20 (2011), 837-853. Zbl1234.05128
  2. [2] Erd˝os, P., Gallai, T., On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337-356. Zbl0090.39401
  3. [3] Faudree, R. J., Schelp, R. H., Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975), 150-160. Zbl0286.05111
  4. [4] Gorgol, I., Tur´an numbers for disjoint copies of graphs, Graphs Combin. 27 (2011), 661-667.[WoS][Crossref] Zbl1234.05129
  5. [5] Harary, F., Graph Theory, Addison-Wesley, Mass.-Menlo Park, Calif.-London, 1969. 

NotesEmbed ?

top

You must be logged in to post comments.