# The Turàn number of the graph 3P4

Halina Bielak; Sebastian Kieliszek

Annales UMCS, Mathematica (2014)

- Volume: 68, Issue: 1, page 21-29
- ISSN: 2083-7402

## Access Full Article

top## Abstract

top## How to cite

topHalina Bielak, and Sebastian Kieliszek. "The Turàn number of the graph 3P4." Annales UMCS, Mathematica 68.1 (2014): 21-29. <http://eudml.org/doc/266538>.

@article{HalinaBielak2014,

abstract = {Let ex (n,G) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let Pi denote a path consisting of i vertices and let mPi denote m disjoint copies of Pi. In this paper we count ex(n, 3P4)},

author = {Halina Bielak, Sebastian Kieliszek},

journal = {Annales UMCS, Mathematica},

keywords = {Forests; trees; Turán number; forests},

language = {eng},

number = {1},

pages = {21-29},

title = {The Turàn number of the graph 3P4},

url = {http://eudml.org/doc/266538},

volume = {68},

year = {2014},

}

TY - JOUR

AU - Halina Bielak

AU - Sebastian Kieliszek

TI - The Turàn number of the graph 3P4

JO - Annales UMCS, Mathematica

PY - 2014

VL - 68

IS - 1

SP - 21

EP - 29

AB - Let ex (n,G) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let Pi denote a path consisting of i vertices and let mPi denote m disjoint copies of Pi. In this paper we count ex(n, 3P4)

LA - eng

KW - Forests; trees; Turán number; forests

UR - http://eudml.org/doc/266538

ER -

## References

top- [1] Bushaw, N., Kettle, N., Tur´an numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20 (2011), 837-853. Zbl1234.05128
- [2] Erd˝os, P., Gallai, T., On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337-356. Zbl0090.39401
- [3] Faudree, R. J., Schelp, R. H., Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975), 150-160. Zbl0286.05111
- [4] Gorgol, I., Tur´an numbers for disjoint copies of graphs, Graphs Combin. 27 (2011), 661-667.[WoS][Crossref] Zbl1234.05129
- [5] Harary, F., Graph Theory, Addison-Wesley, Mass.-Menlo Park, Calif.-London, 1969.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.