Means on scattered compacta

T. Banakh; R. Bonnet; W. Kubis

Topological Algebra and its Applications (2014)

  • Volume: 2, Issue: 1, page 5-10, electronic only
  • ISSN: 2299-3231

Abstract

top
We prove that a separable Hausdor_ topological space X containing a cocountable subset homeomorphic to [0, ω1] admits no separately continuous mean operation and no diagonally continuous n-mean for n ≥ 2.

How to cite

top

T. Banakh, R. Bonnet, and W. Kubis. "Means on scattered compacta." Topological Algebra and its Applications 2.1 (2014): 5-10, electronic only. <http://eudml.org/doc/266591>.

@article{T2014,
abstract = {We prove that a separable Hausdor\_ topological space X containing a cocountable subset homeomorphic to [0, ω1] admits no separately continuous mean operation and no diagonally continuous n-mean for n ≥ 2.},
author = {T. Banakh, R. Bonnet, W. Kubis},
journal = {Topological Algebra and its Applications},
keywords = {Scattered compact space; mean operation; scattered compact space},
language = {eng},
number = {1},
pages = {5-10, electronic only},
title = {Means on scattered compacta},
url = {http://eudml.org/doc/266591},
volume = {2},
year = {2014},
}

TY - JOUR
AU - T. Banakh
AU - R. Bonnet
AU - W. Kubis
TI - Means on scattered compacta
JO - Topological Algebra and its Applications
PY - 2014
VL - 2
IS - 1
SP - 5
EP - 10, electronic only
AB - We prove that a separable Hausdor_ topological space X containing a cocountable subset homeomorphic to [0, ω1] admits no separately continuous mean operation and no diagonally continuous n-mean for n ≥ 2.
LA - eng
KW - Scattered compact space; mean operation; scattered compact space
UR - http://eudml.org/doc/266591
ER -

References

top
  1. [1] G. Aumann, Aufau von Mittelwerten mehrerer Argumente. II. (Analytische Mittelwerte), Math. Ann. 111:1 (1935), 713-730. Zbl0012.25205
  2. [2] G. Aumann, Über Räume mit Mittelbildungen, Math. Ann. 119 (1944), 210-215. Zbl0060.40005
  3. [3] G. Aumann, C. Carathéodory, Ein Satz über die konforme Abbildung mehrfach zusammenhängender ebener Gebiete, Math.Ann. 109 (1934), 756-763. Zbl60.0285.04
  4. [4] T. Banakh, O. Gutik, M. Rajagopalan, On algebraic structures on scattered compacta, Topology Appl. 153:5-6 (2005), 710-723. Zbl1087.22003
  5. [5] R. Bonnet, W. Kubis, Semilattices, unpublished note. 
  6. [6] B. Eckmann, Räume mit Mittelbildung, Comm. Math. Helv. 28 (1954), 329-340. Zbl0056.16403
  7. [7] P. Hilton, A new look at means on topological spaces, Internat. J. Math. Math. Sci. 20:4 (1997), 617-620. [Crossref] Zbl0907.55010
  8. [8] K. Hofmann, M. Mislove, A. Stralka, The Pontryagin duality of compact O-dimensional semilattices and its applications, Lecture Notes in Math., Vol. 396. Springer-Verlag, Berlin-New York, 1974. Zbl0281.06004
  9. [9] I. Parovichenko, On a universal bicompactum of weight @, Dokl. Akad. Nauk SSSR, 150 (1963), 36-39. 
  10. [10] A. Teleiko, M. Zarichnyi, Categorical Topology of Compact Hausdor_ spaces, VNTL Publ., Lviv, 1999. Zbl1032.54004
  11. [11] F. Trigos-Arrieta, M. Turzanski, On Aumann’s theorem that the circle does not admit a mean, Acta Univ. Carolin. Math. Phys. 46:2 (2005), 77-82. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.