Uniform Boundedness Principle

Hideki Sakurai; Hisayoshi Kunimune; Yasunari Shidama

Formalized Mathematics (2008)

  • Volume: 16, Issue: 1, page 19-21
  • ISSN: 1426-2630

Abstract

top
In this article at first, we proved the lemma of the inferior limit and the superior limit. Next, we proved the Baire category theorem (Banach space version) [20], [9], [3], quoted it and proved the uniform boundedness principle. Moreover, the proof of the Banach-Steinhaus theorem is added.MML identifier: LOPBAN 5, version: 7.8.05 4.89.993

How to cite

top

Hideki Sakurai, Hisayoshi Kunimune, and Yasunari Shidama. "Uniform Boundedness Principle." Formalized Mathematics 16.1 (2008): 19-21. <http://eudml.org/doc/266597>.

@article{HidekiSakurai2008,
abstract = {In this article at first, we proved the lemma of the inferior limit and the superior limit. Next, we proved the Baire category theorem (Banach space version) [20], [9], [3], quoted it and proved the uniform boundedness principle. Moreover, the proof of the Banach-Steinhaus theorem is added.MML identifier: LOPBAN 5, version: 7.8.05 4.89.993},
author = {Hideki Sakurai, Hisayoshi Kunimune, Yasunari Shidama},
journal = {Formalized Mathematics},
language = {eng},
number = {1},
pages = {19-21},
title = {Uniform Boundedness Principle},
url = {http://eudml.org/doc/266597},
volume = {16},
year = {2008},
}

TY - JOUR
AU - Hideki Sakurai
AU - Hisayoshi Kunimune
AU - Yasunari Shidama
TI - Uniform Boundedness Principle
JO - Formalized Mathematics
PY - 2008
VL - 16
IS - 1
SP - 19
EP - 21
AB - In this article at first, we proved the lemma of the inferior limit and the superior limit. Next, we proved the Baire category theorem (Banach space version) [20], [9], [3], quoted it and proved the uniform boundedness principle. Moreover, the proof of the Banach-Steinhaus theorem is added.MML identifier: LOPBAN 5, version: 7.8.05 4.89.993
LA - eng
UR - http://eudml.org/doc/266597
ER -

References

top
  1. [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  2. [2] Czesław Byliński. Introduction to real linear topological spaces. Formalized Mathematics, 13(1):99-107, 2005. 
  3. [3] N. J. Dunford and T. Schwartz. Linear operators I. Interscience Publ., 1958. Zbl0084.10402
  4. [4] Noboru Endou, Yasunari Shidama, and Katsumasa Okamura. Baire's category theorem and some spaces generated from real normed space. Formalized Mathematics, 14(4):213-219, 2006. 
  5. [5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990. 
  6. [6] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990. 
  7. [7] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990. 
  8. [8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990. 
  9. [9] Isao Miyadera. Functional Analysis. Riko-Gaku-Sya, 1972. 
  10. [10] Andrzej Nedzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990. 
  11. [11] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004. 
  12. [12] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990. 
  13. [13] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991. 
  14. [14] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39-48, 2004. 
  15. [15] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990. 
  16. [16] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  17. [17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  18. [18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  19. [19] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990. 
  20. [20] Kosaku Yoshida. Functional Analysis. Springer, 1980. 
  21. [21] Bo Zhang, Hiroshi Yamazaki, and Yatsuka Nakamura. Inferior limit and superior limit of sequences of real numbers. Formalized Mathematics, 13(3):375-381, 2005. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.