Solution to an open problem about a transformation on the space of copulas
Fabrizio Durante; Juan Fernández-Sánchez; Wolfgang Trutschnig
Dependence Modeling (2014)
- Volume: 2, Issue: 1, page 65-72, electronic only
- ISSN: 2300-2298
Access Full Article
topAbstract
topHow to cite
topFabrizio Durante, Juan Fernández-Sánchez, and Wolfgang Trutschnig. "Solution to an open problem about a transformation on the space of copulas." Dependence Modeling 2.1 (2014): 65-72, electronic only. <http://eudml.org/doc/266603>.
@article{FabrizioDurante2014,
abstract = {We solve a recent open problem about a new transformation mapping the set of copulas into itself. The obtained mapping is characterized in algebraic terms and some limit results are proved.},
author = {Fabrizio Durante, Juan Fernández-Sánchez, Wolfgang Trutschnig},
journal = {Dependence Modeling},
keywords = {Copula; Concordance; Quasi–copula; copula; concordance; quasi-copula},
language = {eng},
number = {1},
pages = {65-72, electronic only},
title = {Solution to an open problem about a transformation on the space of copulas},
url = {http://eudml.org/doc/266603},
volume = {2},
year = {2014},
}
TY - JOUR
AU - Fabrizio Durante
AU - Juan Fernández-Sánchez
AU - Wolfgang Trutschnig
TI - Solution to an open problem about a transformation on the space of copulas
JO - Dependence Modeling
PY - 2014
VL - 2
IS - 1
SP - 65
EP - 72, electronic only
AB - We solve a recent open problem about a new transformation mapping the set of copulas into itself. The obtained mapping is characterized in algebraic terms and some limit results are proved.
LA - eng
KW - Copula; Concordance; Quasi–copula; copula; concordance; quasi-copula
UR - http://eudml.org/doc/266603
ER -
References
top- [1] C. Alsina, A. Damas, and J. J. Quesada-Molina. Some functionals for copulas. Int. J. Math. Math. Sci., 14(1):45–54, 1991. Zbl0732.62047
- [2] C. Bernard, X. Jiang, and S. Vanduffel. A note on “Improved Fréchet bounds and model-free pricing of multi-asset options” by Tankov (2011). J. Appl. Probab., 49(3):866–875, 2012. Zbl1259.60022
- [3] B. De Baets, H. De Meyer, J. Kalická, and R. Mesiar. Flipping and cyclic shifting of binary aggregation functions. Fuzzy Sets Syst., 160(6):752–765, 2009. Zbl1175.62002
- [4] E. Di Bernardino and D. Rullière. On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators. Dependence Modeling, 1:1–36, 2013. Zbl1287.62005
- [5] A. Dolati and M. Úbeda-Flores. Constructing copulas by means of pairs of order statistics. Kybernetika (Prague), 45(6):992– 1002, 2009. Zbl1200.62055
- [6] F. Durante. A new class of symmetric bivariate copulas. J. Nonparametr. Stat., 18(7-8):499–510, (2007), 2006. Zbl1122.62039
- [7] F. Durante, J. Fernández-Sánchez, and R. Pappadà. Copulas, diagonals and tail dependence. Fuzzy Sets Syst., in press, 2015.
- [8] F. Durante, J. Fernández-Sánchez, and C. Sempi. Multivariate patchwork copulas: a unified approach with applications to partial comonotonicity. Insurance Math. Econom., 53:897–905, 2013. Zbl1290.62040
- [9] F. Durante, R. Foschi, and P. Sarkoci. Distorted copulas: constructions and tail dependence. Comm. Statist. Theory Methods, 39(12):2288–2301, 2010. Zbl1194.62075
- [10] F. Durante, A. Kolesárová, R. Mesiar, and C. Sempi. Semilinear copulas. Fuzzy Sets Syst., 159(1):63–76, 2008. Zbl1274.62108
- [11] C. Genest, J. J. Quesada-Molina, J. A. Rodríguez-Lallena, and C. Sempi. A characterization of quasi-copulas. J. Multivariate Anal., 69(2):193–205, 1999. Zbl0935.62059
- [12] E. P. Klement, R. Mesiar, and E. Pap. Transformations of copulas. Kybernetika (Prague), 41(4):425–434, 2005. Zbl1243.62019
- [13] A. Kolesárová and R. Mesiar. On linear and quadratic constructions of aggregation functions. Fuzzy Sets Syst., in press, 2015.
- [14] A. Kolesárová, R. Mesiar, and J. Kalická. On a new construction of 1–Lipschitz aggregation functions, quasi–copulas and copulas. Fuzzy Sets Syst., 226:19–31, 2013. Zbl1284.68550
- [15] R. Mesiar and A. Stupnanová. Open problems from the 12th International Conference on Fuzzy Sets Theory and Its Applications. Fuzzy Sets Syst., in press, 2015.
- [16] F. Michiels and A. De Schepper. How to improve the fit of Archimedean copulas by means of transforms. Statist. Papers, 53(2):345–355, 2012. Zbl06084557
- [17] P. Mikusinski and M. D. Taylor. Some approximations of n-copulas. Metrika, 72(3):385–414, 2010. Zbl1197.62050
- [18] P. M. Morillas. A method to obtain new copulas from a given one. Metrika, 61(2):169–184, 2005. Zbl1079.62056
- [19] R. B. Nelsen. An introduction to copulas. Springer Series in Statistics. Springer, New York, second edition, 2006.
- [20] R. B. Nelsen and M. Úbeda-Flores. The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas. C. R.Math. Acad. Sci. Paris, 341(9):583–586, 2005. Zbl1076.62053
- [21] P. Tankov. Improved Fréchet bounds and model-free pricing of multi-asset options. J. Appl. Probab., 48(2):389–403, 2011. Zbl1219.60016
- [22] E. A. Valdez and Y. Xiao. On the distortion of a copula and its margins. Scand. Actuar. J., 4:292–317, 2011. Zbl1277.62140
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.