Inverse Trigonometric Functions Arcsec and Arccosec

Bing Xie; Xiquan Liang; Fuguo Ge

Formalized Mathematics (2008)

  • Volume: 16, Issue: 2, page 159-165
  • ISSN: 1426-2630

Abstract

top
This article describes definitions of inverse trigonometric functions arcsec and arccosec, as well as their main properties.MML identifier: SINCOS10, version: 7.8.10 4.100.1011

How to cite

top

Bing Xie, Xiquan Liang, and Fuguo Ge. "Inverse Trigonometric Functions Arcsec and Arccosec." Formalized Mathematics 16.2 (2008): 159-165. <http://eudml.org/doc/266610>.

@article{BingXie2008,
abstract = {This article describes definitions of inverse trigonometric functions arcsec and arccosec, as well as their main properties.MML identifier: SINCOS10, version: 7.8.10 4.100.1011},
author = {Bing Xie, Xiquan Liang, Fuguo Ge},
journal = {Formalized Mathematics},
language = {eng},
number = {2},
pages = {159-165},
title = {Inverse Trigonometric Functions Arcsec and Arccosec},
url = {http://eudml.org/doc/266610},
volume = {16},
year = {2008},
}

TY - JOUR
AU - Bing Xie
AU - Xiquan Liang
AU - Fuguo Ge
TI - Inverse Trigonometric Functions Arcsec and Arccosec
JO - Formalized Mathematics
PY - 2008
VL - 16
IS - 2
SP - 159
EP - 165
AB - This article describes definitions of inverse trigonometric functions arcsec and arccosec, as well as their main properties.MML identifier: SINCOS10, version: 7.8.10 4.100.1011
LA - eng
UR - http://eudml.org/doc/266610
ER -

References

top
  1. [1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  2. [2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  3. [3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  4. [4] Pacharapokin Chanapat, Kanchun, and Hiroshi Yamazaki. Formulas and identities of trigonometric functions. Formalized Mathematics, 12(2):139-141, 2004. 
  5. [5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990. 
  6. [6] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990. 
  7. [7] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990. 
  8. [8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990. 
  9. [9] Yatsuka Nakamura. Half open intervals in real numbers. Formalized Mathematics, 10(1):21-22, 2002. 
  10. [10] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990. 
  11. [11] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990. 
  12. [12] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990. 
  13. [13] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990. 
  14. [14] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990. 
  15. [15] Peng Wang and Bo Li. Several differentiation formulas of special functions. Part V. Formalized Mathematics, 15(3):73-79, 2007. 
  16. [16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 
  17. [17] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.