Vibrational properties of nanographene
Sandeep Kumar Singh; F.M. Peeters
Nanoscale Systems: Mathematical Modeling, Theory and Applications (2013)
- Volume: 2, page 10-29
- ISSN: 2299-3290
Access Full Article
topAbstract
topHow to cite
topReferences
top- J. Zimmermann, P. Pavone, and G. Cuniberti. Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes: Minimal force-constant model. Phys. Rev. B, 78 (4), 045410 (2008). [Crossref]
- J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejón. Phonon Dispersion in Graphite. Phys. Rev. Lett., 92 (7), 075501 (2004).
- J. Zhou and J. Dong. Vibrational property and Raman spectrum of carbon nanoribbon. Appl. Phys. Lett., 91, 173108 (2007). [WoS]
- R. Gillen, M. Mohr, C. Thomsen, and J. Maultzsch. Vibrational properties of graphene nanoribbons by first-principles calculations. Phys. Rev. B, 80, 155418 (2009).
- G. Gao, T. Çaˇgin, and W. A. Goddard III. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology, 9, 184-191 (1998). [Crossref]
- R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus. Raman intensity of single-wall carbon nanotubes. Phys. Rev. B, 57 (7), 4145 (1998). [Crossref]
- M. Menon, E. Richter, and K. R. Subbaswamy. Structural and vibrational properties of fullerenes and nanotubes in a nonorthogonal tight−binding scheme. J. Chem. Phys., 104 (15), 5875-5882 (1996).
- B. Barszcz, B. Laskowska, A. Graja, E. Y. Park, T. Kim, and K. Lee. Vibrational properties of two fullerene-thiophenebased dyads. Synth. Met., 159 (23-24), 2539-2543 (2009). [WoS]
- E. Malolepsza, H. A. Witek, and S. Irle. Comparison of Geometric, Electronic, and Vibrational Properties for Isomers of Small Fullerenes C20−C36 . J. Phys. Chem. A., 111 (29), 6649 (2007).
- S. Bera, A. Arnold, F. Evers, R. Narayanan, and P. W¨olfle. Elastic properties of graphene flakes: Boundary effects and lattice vibrations. Phys. Rev. B, 82 (19), 195445 (2010). [WoS]
- B. K. Agrawal, S. Agrawal, and S. Singh. Structural and vibrational properties of small carbon clusters. J. Nanosci. Nanotechnol., 5 (3), 442-448 (2005).
- N. Breda, G. Onida, G. Benedek, G. Col`o, and R. A. Broglia. Bond-charge-model calculation of vibrational properties in small carbon aggregates: From spherical clusters to linear chains. Phys. Rev. B, 58 (16), 11000 (1998). [Crossref]
- R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, and M. S. Dresselhaus. Raman Spectroscopy of Graphene and Carbon Nanotubes. Advances in Physics, 60 (3), 413-550 (2011). [WoS][Crossref]
- A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, and Cinzia Casiraghi. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett., 12 (8), 3925-3930 (2012). [WoS][PubMed][Crossref]
- A. K. Geim and K. S. Novoselov, The Rise of Graphene, Nat. Mater., 6), 183-191 (2007).
- A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus. Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes. Science, 275 (5297), 187-190 (1997).
- L. Venkataraman. Massachusetts Institute of Technology, PhD-thesis(1993).
- R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus. Phonon Modes in Carbon Nanotubules. Chem. Phys. Lett., 209 (1-2), 77-82 (1993).
- M. Tommasini, C. Castiglioni, and G. Zerbi. Raman Scattering of Molecular Graphene. Phys. Chem. Chem. Phys., 11), 10185-10194 (2009). [PubMed][Crossref]
- M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cançado, A. Jorio, and R. Saito. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys., 9, 1276-1291 (2007). [PubMed][Crossref][WoS]
- A. G. Ryabenko, N. A. Kiselev, J. L. Hutchison, T. N. Moroz, S. S. Bukalov, L. A. Mikhalitsyn, et al. Spectral properties of single-walled carbon nanotubes encapsulating fullerenes. Carbon, 45 (7), 1492-1505 (2007). [Crossref][WoS]
- K. H. Michel and B. Verberck. Theory of the evolution of phonon spectra and elastic constants from graphene to graphite. Phys. Rev. B, 78 (8), 085424 (2008). [Crossref]
- M. Mohr, J. Maultzsch, E. Dobardžic, S. Reich, I. Miloševic, M. Damnjanovic, et al. Phonon dispersion of graphite by inelastic x-ray scattering. Phys. Rev. B, 76 (3), 035439 (2007).
- B. Partoens and F. M. Peeters. From graphene to graphite: Electronic structure around the K point. Phys. Rev. B, 74 (7), 075404 (2006). [Crossref]
- N. Mounet and N. Marzari. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B, 71 (20), 205214 (2005).
- W. An, Y. Gao, S. Bulusu, and X. C. Zeng. Ab initio calculation of bowl, cage, and ring isomers of C20 and C20− . J. Chem. Phys., 122 (20), 204109-204116 (2005).
- D. P. Kosimov, A. A. Dzhurakhalov, and F. M. Peeters. Carbon clusters: From ring structures to nanographene. Phys. Rev. B, 81 (19), 195414 (2010). [Crossref][WoS]
- D. P. Kosimov, A. A. Dzhurakhalov, and F. M. Peeters. Theoretical study of the stable states of small carbon clusters Cn (n=2-10). Phys. Rev. B, 78 (23), 235433 (2008). [WoS][Crossref]
- M. Ezawa. Metallic graphene nanodisks: electric and magnetic properties. Phys. Rev. B, 76 (24), 245415 (2007). [WoS]
- J. Fernandez-Rossier and J. J. Palacios. Magnetism in graphene nanoislands. Phys. Rev. Lett., 99 (17), 177204 (2007). [Crossref]
- D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys.: Condens. Matter, 14 (4), 783-802 (2002). [Crossref]
- J. D. Louck. Exact normal modes of oscillation of a linear chain of identicalatoms. Am. J. Phys., 30, 585 (1962). Zbl0129.43805
- J. H. Eggert. One-dimensional lattice dynamics with periodic boundary conditions: An analog demonstration. Am. J. Phys., 65, 108 (1997).
- T. Zhou, C. Xu, X. Zhang, C. Cheng, L. Chen, and Y. Xu. A simple theoretical model for ring and nanotube radial breathing mode. Acta Phys. -Chim. Sin., 24 (9), 1579-1583 (2008). [WoS][Crossref]
- M. Vandescuren, P. Hermet, V. Meunier, L. Henrard, and Ph. Lambin. Theoretical study of the vibrational edge modes in graphene nanoribbons. Phys. Rev. B, 78 (19), 195401 (2008). [Crossref]
- V. A. Schweigert and F. M. Peeters. Spectral properties of classical two-dimensional clusters. Phys. Rev. B, 51 (12), 7700 (1995). [Crossref]
- L. X. Benedict, S. G. Louie, and M. L. Cohen. Heat capacity of carbon nanotubes. Solid State Commun., 100 (3), 177-179 (1996).
- A. A. Maradudin, E. W. Montroll, G. H. Weiss, and I. P. Ipatova. Theory of the vibrational frequency spectra of solids. In: H. E. Ehrenreich, F. Seitz, and D. Turnbull (ed.). Solid State Physics, Academic, New York, pp. 129-188 (1971).
- J. Zimmermann, P. Pavone, and G. Cuniberti. Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes: Minimal force-constant model. Phys. Rev. B, 78 (4), 045410 (2008). [Crossref]