The Jordan-Hölder Theorem

Marco Riccardi

Formalized Mathematics (2007)

  • Volume: 15, Issue: 2, page 35-51
  • ISSN: 1426-2630

Abstract

top
The goal of this article is to formalize the Jordan-Hölder theorem in the context of group with operators as in the book [5]. Accordingly, the article introduces the structure of group with operators and reformulates some theorems on a group already present in the Mizar Mathematical Library. Next, the article formalizes the Zassenhaus butterfly lemma and the Schreier refinement theorem, and defines the composition series.

How to cite

top

Marco Riccardi. "The Jordan-Hölder Theorem." Formalized Mathematics 15.2 (2007): 35-51. <http://eudml.org/doc/266648>.

@article{MarcoRiccardi2007,
abstract = {The goal of this article is to formalize the Jordan-Hölder theorem in the context of group with operators as in the book [5]. Accordingly, the article introduces the structure of group with operators and reformulates some theorems on a group already present in the Mizar Mathematical Library. Next, the article formalizes the Zassenhaus butterfly lemma and the Schreier refinement theorem, and defines the composition series.},
author = {Marco Riccardi},
journal = {Formalized Mathematics},
language = {eng},
number = {2},
pages = {35-51},
title = {The Jordan-Hölder Theorem},
url = {http://eudml.org/doc/266648},
volume = {15},
year = {2007},
}

TY - JOUR
AU - Marco Riccardi
TI - The Jordan-Hölder Theorem
JO - Formalized Mathematics
PY - 2007
VL - 15
IS - 2
SP - 35
EP - 51
AB - The goal of this article is to formalize the Jordan-Hölder theorem in the context of group with operators as in the book [5]. Accordingly, the article introduces the structure of group with operators and reformulates some theorems on a group already present in the Mizar Mathematical Library. Next, the article formalizes the Zassenhaus butterfly lemma and the Schreier refinement theorem, and defines the composition series.
LA - eng
UR - http://eudml.org/doc/266648
ER -

References

top
  1. [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  2. [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  3. [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  4. [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  5. [5] Nicolas Bourbaki. Elements of Mathematics. Algebra I. Chapters 1-3. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989. Zbl0673.00001
  6. [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990. 
  7. [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  8. [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  9. [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  10. [10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  11. [11] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996. 
  12. [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990. 
  13. [13] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991. 
  14. [14] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990. 
  15. [15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990. 
  16. [16] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics. 
  17. [17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990. 
  18. [18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990. 
  19. [19] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990. 
  20. [20] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990. 
  21. [21] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990. 
  22. [22] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990. 
  23. [23] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991. 
  24. [24] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991. 
  25. [25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  26. [26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  27. [27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.