The Jordan-Hölder Theorem
Formalized Mathematics (2007)
- Volume: 15, Issue: 2, page 35-51
- ISSN: 1426-2630
Access Full Article
topAbstract
topHow to cite
topMarco Riccardi. "The Jordan-Hölder Theorem." Formalized Mathematics 15.2 (2007): 35-51. <http://eudml.org/doc/266648>.
@article{MarcoRiccardi2007,
abstract = {The goal of this article is to formalize the Jordan-Hölder theorem in the context of group with operators as in the book [5]. Accordingly, the article introduces the structure of group with operators and reformulates some theorems on a group already present in the Mizar Mathematical Library. Next, the article formalizes the Zassenhaus butterfly lemma and the Schreier refinement theorem, and defines the composition series.},
author = {Marco Riccardi},
journal = {Formalized Mathematics},
language = {eng},
number = {2},
pages = {35-51},
title = {The Jordan-Hölder Theorem},
url = {http://eudml.org/doc/266648},
volume = {15},
year = {2007},
}
TY - JOUR
AU - Marco Riccardi
TI - The Jordan-Hölder Theorem
JO - Formalized Mathematics
PY - 2007
VL - 15
IS - 2
SP - 35
EP - 51
AB - The goal of this article is to formalize the Jordan-Hölder theorem in the context of group with operators as in the book [5]. Accordingly, the article introduces the structure of group with operators and reformulates some theorems on a group already present in the Mizar Mathematical Library. Next, the article formalizes the Zassenhaus butterfly lemma and the Schreier refinement theorem, and defines the composition series.
LA - eng
UR - http://eudml.org/doc/266648
ER -
References
top- [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
- [2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
- [3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
- [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
- [5] Nicolas Bourbaki. Elements of Mathematics. Algebra I. Chapters 1-3. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989. Zbl0673.00001
- [6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
- [7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
- [8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
- [9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
- [10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
- [11] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathematics, 5(2):241-245, 1996.
- [12] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
- [13] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
- [14] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
- [15] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
- [16] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics.
- [17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
- [18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
- [19] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.
- [20] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
- [21] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.
- [22] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.
- [23] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.
- [24] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.
- [25] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
- [26] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
- [27] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.