On separation of eigenvalues by the permutation group
Special Matrices (2014)
- Volume: 2, Issue: 1, page 78-84
- ISSN: 2300-7451
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] C. S. Ballantine, Stabilization by a diagonal matrix, Proc. Amer. Math. Soc. 25 (1970), 728-34. Zbl0228.15001
- [2] G. Cigler, M. Jerman, On separation of eigenvalues by certain matrix subgroups, Linear Algebra Appl. 440 (2014), 213-217.[WoS] Zbl1286.15007
- [3] M. Choi, Z. Huang, C. Li, N. Sze, Every invertible matrix is diagonally equivalent to a matrix with distinct eigenvalues, Linear Algebra Appl. 436 (2012), 3773-3776.[WoS] Zbl1244.15006
- [4] X. Feng, Z. Li, T. Huang, Is every nonsingular matrix diagonally equivalent to a matrix with all distinct eigenvalues?, Linear Algebra Appl. 436 (2012), 120-125.[WoS] Zbl1232.15008
- [5] M. E. Fisher, A. T. Fuller, On the stabilization of matrices and the convergence of linear iterative processes, Proc. Cambridge Philos. Soc. 54 (1958), 417-425. Zbl0085.33102
- [6] S. Friedland, On inverse multiplicative eigenvalue problems for matrices, Linear Algebra Appl. 12 (1975), 127-137. Zbl0329.15003
- [7] H. Radjavi, P. Rosenthal, Simultaneous Triangularization, Universitext, Springer-Verlag, New York, 2000.