# On extended eigenvalues and extended eigenvectors of truncated shift

Concrete Operators (2013)

- Volume: 1, page 19-27
- ISSN: 2299-3282

## Access Full Article

top## Abstract

top## How to cite

topHasan Alkanjo. "On extended eigenvalues and extended eigenvectors of truncated shift." Concrete Operators 1 (2013): 19-27. <http://eudml.org/doc/266777>.

@article{HasanAlkanjo2013,

abstract = {In this paper we consider the truncated shift operator Su on the model space K2u := H2 θ uH2. We say that a complex number λ is an extended eigenvalue of Su if there exists a nonzero operator X, called extended eigenvector associated to λ, and satisfying the equation SuX = λXSu. We give a complete description of the set of extended eigenvectors of Su, in the case of u is a Blaschke product..},

author = {Hasan Alkanjo},

journal = {Concrete Operators},

keywords = {Extended eigenvalues; extended eigenvectors; Blaschke product; model space; extended eigenvalues},

language = {eng},

pages = {19-27},

title = {On extended eigenvalues and extended eigenvectors of truncated shift},

url = {http://eudml.org/doc/266777},

volume = {1},

year = {2013},

}

TY - JOUR

AU - Hasan Alkanjo

TI - On extended eigenvalues and extended eigenvectors of truncated shift

JO - Concrete Operators

PY - 2013

VL - 1

SP - 19

EP - 27

AB - In this paper we consider the truncated shift operator Su on the model space K2u := H2 θ uH2. We say that a complex number λ is an extended eigenvalue of Su if there exists a nonzero operator X, called extended eigenvector associated to λ, and satisfying the equation SuX = λXSu. We give a complete description of the set of extended eigenvectors of Su, in the case of u is a Blaschke product..

LA - eng

KW - Extended eigenvalues; extended eigenvectors; Blaschke product; model space; extended eigenvalues

UR - http://eudml.org/doc/266777

ER -

## References

top- [1] H. Bercovici. Operator theory and arithmetic in H1, volume 26 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1988.
- [2] A. Biswas and S. Petrovic. On extended eigenvalues of operators. Integral Equations Operator Theory, 55(2):233–248, 2006. Zbl1119.47019
- [3] N. K. Nikol0ski˘ı. Treatise on the shift operator, volume 273 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1986. Spectral function theory, With an appendix by S. V. Hrušcev [S. V. Khrushchëv] and V. V. Peller, Translated from the Russian by Jaak Peetre.
- [4] M. Rosenblum. On the operator equation BX − XA = Q. Duke Math. J., 23:263–269, 1956.
- [5] D. Sarason. Free interpolation in the Nevanlinna class. In Linear and complex analysis, volume 226 of Amer. Math. Soc. Transl. Ser. 2, pages 145–152. Amer. Math. Soc., Providence, RI, 2009. Zbl1183.30031
- [6] B. Sz.-Nagy and C. Foias. Harmonic analysis of operators on Hilbert space. Translated from the French and revised. North-Holland Publishing Co., Amsterdam, 1970. Zbl0201.45003

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.